TK
Tuomas Kilpeläinen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
5,870
h-index:
48
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

Iris Heid et al.Oct 10, 2010
Cecilia Lindgren and colleagues report results of a large-scale genome-wide association study for waist-to-hip ratio, a measure of body fat distribution. They identify 13 new loci associated with this trait, several of which show stronger effects in women than in men. Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
0
Citation913
0
Save
0

The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

Benjamin Voight et al.Aug 2, 2012
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the "Metabochip," a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.
0
Citation483
0
Save
0

Quality control and conduct of genome-wide association meta-analyses

Thomas Winkler et al.Apr 24, 2014
A protocol providing guidelines on the organizational aspects of genome-wide association meta-analyses and to implement quality control at the study file level, the meta-level across studies, and the meta-analysis output level. Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.
0
Citation453
0
Save
0

Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

Joshua Randall et al.Jun 6, 2013
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
0
Citation406
0
Save
0

Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile

Tuomas Kilpeläinen et al.Jun 26, 2011
Ruth Loos and colleagues use genome-wide association to identify common variants influencing body fat percentage. Unexpectedly, they show that a body-fat–decreasing allele near IRS1 is associated with an impaired metabolic profile, including increased risk of type 2 diabetes and coronary artery disease. Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10−6) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10−26) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10−11) and one near SPRY2 (P = 3 × 10−8). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat–decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
0
Citation316
0
Save
0

Association of Birth Weight With Type 2 Diabetes and Glycemic Traits

Tao Huang et al.Sep 20, 2019

Importance

 Observational studies have shown associations of birth weight with type 2 diabetes (T2D) and glycemic traits, but it remains unclear whether these associations represent causal associations. 

Objective

 To test the association of birth weight with T2D and glycemic traits using a mendelian randomization analysis. 

Design, Setting, and Participants

 This mendelian randomization study used a genetic risk score for birth weight that was constructed with 7 genome-wide significant single-nucleotide polymorphisms. The associations of this score with birth weight and T2D were tested in a mendelian randomization analysis using study-level data. The association of birth weight with T2D was tested using both study-level data (7 single-nucleotide polymorphisms were used as an instrumental variable) and summary-level data from the consortia (43 single-nucleotide polymorphisms were used as an instrumental variable). Data from 180 056 participants from 49 studies were included. 

Main Outcomes and Measures

 Type 2 diabetes and glycemic traits. 

Results

 This mendelian randomization analysis included 49 studies with 41 155 patients with T2D and 80 008 control participants from study-level data and 34 840 patients with T2D and 114 981 control participants from summary-level data. Study-level data showed that a 1-SD decrease in birth weight due to the genetic risk score was associated with higher risk of T2D among all participants (odds ratio [OR], 2.10; 95% CI, 1.69-2.61;P = 4.03 × 10−5), among European participants (OR, 1.96; 95% CI, 1.42-2.71;P = .04), and among East Asian participants (OR, 1.39; 95% CI, 1.18-1.62;P = .04). Similar results were observed from summary-level analyses. In addition, each 1-SD lower birth weight was associated with 0.189 SD higher fasting glucose concentration (β = 0.189; SE = 0.060;P = .002), but not with fasting insulin, 2-hour glucose, or hemoglobin A1cconcentration. 

Conclusions and Relevance

 In this study, a genetic predisposition to lower birth weight was associated with increased risk of T2D and higher fasting glucose concentration, suggesting genetic effects on retarded fetal growth and increased diabetes risk that either are independent of each other or operate through alterations of integrated biological mechanisms.
0
Citation42
0
Save
0

Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis

Jordi Merino et al.Jul 25, 2019
To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.Individual participant data meta-analysis.Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
0
Citation36
0
Save
0

Dairy Consumption and Body Mass Index Among Adults: Mendelian Randomization Analysis of 184802 Individuals from 25 Studies

Tao Huang et al.Jan 1, 2018
Abstract BACKGROUND Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined. METHODS We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies. RESULTS Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4). CONCLUSIONS The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
0
Citation35
0
Save
Load More