Summary Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay of transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs - FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2 - bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remained unknown. We mapped genome-wide chromatin contacts and TF binding profiles in HSPC subsets (HSC, CMP, GMP, MEP) and found that heptad occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. These findings suggest that specific heptad-TF combinations play critical roles in regulating hematopoietic differentiation and provide a valuable resource for development of targeted therapies to manipulate specific HSPC subsets.