JG
Javier González-Castillo
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(74% Open Access)
Cited by:
1,434
h-index:
29
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Periodic changes in fMRI connectivity

Daniel Handwerker et al.Jul 14, 2012
P
J
V
D
The first two decades of brain research using fMRI have been dominated by studies that measure signal changes in response to a presented task. A rapidly increasing number of studies are showing that consistent activation maps appear by assessment of signal correlations during time periods in which the subjects were not directed to perform any specific task (i.e. "resting state correlations"). Even though neural interactions can happen on much shorter time scales, most "resting state" studies assess these temporal correlations over a period of about 5 to 10 min. Here we investigate how these temporal correlations change on a shorter time scale. We examine changes in brain correlations to the posterior cingulate cortex (PCC) across a 10‐minute scan. We show: (1) fMRI correlations fluctuate over time, (2) these fluctuations can be periodic, and (3) correlations between the PCC and other brain regions fluctuate at distinct frequencies. While the precise frequencies of correlation fluctuations vary across subjects and runs, it is still possible to parse brain regions and combinations of brain regions based on fluctuation frequency differences. To evaluate the potential biological significance of these empirical observations, we then use synthetic time series data with identical amplitude spectra, but randomized phase to show that similar effects can still appear even if the timing relationships between voxels are randomized. This implies that observed correlation fluctuations could occur between regions with distinct amplitude spectra, whether or not there are dynamic changes in neural connectivity between such regions. As more studies of brain connectivity dynamics appear, particularly studies using correlation as a key metric, it is vital to better distinguish true neural connectivity dynamics from connectivity fluctuations that are inherently part of this method. Our results also highlight the rich information in the power spectra of fMRI data that can be used to parse brain regions.
0

Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns

Javier González-Castillo et al.Jun 29, 2015
+4
D
C
J
Significance Recently, it was shown that functional connectivity patterns exhibit complex spatiotemporal dynamics at the scale of tens of seconds. Of particular interest is the observation of a limited set of quasi-stable, whole-brain, recurring configurations—commonly referred to as functional connectivity states (FC states)—hypothesized to reflect the continuous flux of cognitive processes. Here, to test this hypothesis, subjects were continuously scanned as they engaged in and transitioned between mental states dictated by tasks. We demonstrate that there is a strong relationship between FC states and ongoing cognition that permits accurate tracking of mental states in individual subjects. We also demonstrate how informative changes in connectivity are not restricted solely to those regions with sustained elevations in activity during task performance.
0

Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI

David Kemmerer et al.Dec 4, 2007
+2
T
J
D
The Simulation Framework, also known as the Embodied Cognition Framework, maintains that conceptual knowledge is grounded in sensorimotor systems. To test several predictions that this theory makes about the neural substrates of verb meanings, we used functional magnetic resonance imaging (fMRI) to scan subjects’ brains while they made semantic judgments involving five classes of verbs—specifically, Running verbs (e.g., run, jog, walk), Speaking verbs (e.g., shout, mumble, whisper), Hitting verbs (e.g., hit, poke, jab), Cutting verbs (e.g., cut, slice, hack), and Change of State verbs (e.g., shatter, smash, crack). These classes were selected because they vary with respect to the presence or absence of five distinct semantic components—specifically, ACTION, MOTION, CONTACT, CHANGE OF STATE, and TOOL USE. Based on the Simulation Framework, we hypothesized that the ACTION component depends on the primary motor and premotor cortices, that the MOTION component depends on the posterolateral temporal cortex, that the CONTACT component depends on the intraparietal sulcus and inferior parietal lobule, that the CHANGE OF STATE component depends on the ventral temporal cortex, and that the TOOL USE component depends on a distributed network of temporal, parietal, and frontal regions. Virtually all of the predictions were confirmed. Taken together, these findings support the Simulation Framework and extend our understanding of the neuroanatomical distribution of different aspects of verb meaning.
0

Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis

Javier González-Castillo et al.Mar 19, 2012
+3
D
Z
J
The brain is the body's largest energy consumer, even in the absence of demanding tasks. Electrophysiologists report on-going neuronal firing during stimulation or task in regions beyond those of primary relationship to the perturbation. Although the biological origin of consciousness remains elusive, it is argued that it emerges from complex, continuous whole-brain neuronal collaboration. Despite converging evidence suggesting the whole brain is continuously working and adapting to anticipate and actuate in response to the environment, over the last 20 y, task-based functional MRI (fMRI) have emphasized a localizationist view of brain function, with fMRI showing only a handful of activated regions in response to task/stimulation. Here, we challenge that view with evidence that under optimal noise conditions, fMRI activations extend well beyond areas of primary relationship to the task; and blood-oxygen level-dependent signal changes correlated with task-timing appear in over 95% of the brain for a simple visual stimulation plus attention control task. Moreover, we show that response shape varies substantially across regions, and that whole-brain parcellations based on those differences produce distributed clusters that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible across subjects. These findings highlight the exquisite detail lying in fMRI signals beyond what is normally examined, and emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a result of localized brain function, but a consequence of high noise and overly strict predictive response models.
1

Highlight Results, Don’t Hide Them: Enhance interpretation, reduce biases and improve reproducibility

Paul Taylor et al.Oct 27, 2022
+6
P
J
P
Abstract Most neuroimaging studies display results that represent only a tiny fraction of the collected data. While it is conventional to present “only the significant results” to the reader, here we suggest that this practice has several negative consequences for both reproducibility and understanding. This practice hides away most of the results of the dataset and leads to problems of selection bias and irreproducibility, both of which have been recognized as major issues in neuroimaging studies recently. Opaque, all-or-nothing thresholding, even if well-intentioned, places undue influence on arbitrary filter values, hinders clear communication of scientific results, wastes data, is antithetical to good scientific practice, and leads to conceptual inconsistencies. It is also inconsistent with the properties of the acquired data and the underlying biology being studied. Instead of presenting only a few statistically significant locations and hiding away the remaining results, we propose that studies should “highlight” the former while also showing as much as possible of the rest. This is distinct from but complementary to utilizing data sharing repositories: the initial presentation of results has an enormous impact on the interpretation of a study. We present practical examples for voxelwise, regionwise and cross-study analyses using publicly available data that was analyzed previously by 70 teams (NARPS; Botvinik-Nezer, et al., 2020), showing that it is possible to balance the goals of displaying a full set of results with providing the reader reasonably concise and “digestible” findings. In particular, the highlighting approach sheds useful light on the kind of variability present among the NARPS teams’ results, which is primarily a varied strength of agreement rather than disagreement. Using a meta-analysis built on the informative “highlighting” approach shows this relative agreement, while one using the standard “hiding” approach does not. We describe how this simple but powerful change in practice---focusing on highlighting results, rather than hiding all but the strongest ones---can help address many large concerns within the field, or at least to provide more complete information about them. We include a list of practical suggestions for results reporting to improve reproducibility, cross-study comparisons and meta-analyses. Highlights Most studies do not present all results of their analysis, hiding subthreshold ones. Hiding results negatively affects the interpretation and understanding of the study. Neuroimagers should present all results of their study, highlighting key ones. Using the public NARPS data, we show several benefits of the “highlighting” approach. The highlighting approach improves individual studies and meta-analyses.
1
Citation6
0
Save
0

Commentary on Pang et al. (2023)Nature

Joshua Faskowitz et al.Jul 22, 2023
+5
D
D
J
Abstract Pang et al. (2023) present novel analyses demonstrating that brain dynamics can be understood as resulting from the excitation of geometric modes, derived from the shape of the brain. Notably, they demonstrate that linear combinations of geometric modes can reconstruct patterns of fMRI data more accurately, and with fewer dimensions, than comparable connectivity-derived modes. Equipped with these results, and underpinned by neural field theory, the authors contend that the geometry of the cortical surface provides a more parsimonious explanation of brain activity than structural brain connectivity. This claim runs counter to prevailing theories of information flow in the brain, which emphasize the role of long-distance axonal projections and fasciculated white matter in relaying signals between cortical regions (Honey et al. 2009; Deco et al. 2011; Seguin et al., 2023). While we acknowledge that cortical geometry plays an important role in shaping human brain function, we feel that the presented work falls short of establishing that the brain’s geometry is “a more fundamental constraint on dynamics than complex interregional connectivity” (Pang et al. 2023). Here, we provide 1) a brief critique of the paper’s framing and 2) evidence showing that their methodology lacks specificity to the brain’s orientation and shape. Ultimately, we recognize that the geometric mode approach is a powerful representational framework for brain dynamics analysis, but we also believe that there are key caveats to consider alongside the claims made in the manuscript.
20

Ultra-slow fMRI fluctuations in the fourth ventricle as a marker of drowsiness

Javier González-Castillo et al.Jul 9, 2021
P
D
I
J
Abstract Wakefulness levels modulate estimates of functional connectivity (FC), and, if unaccounted for, can become a substantial confound in resting-state fMRI. Unfortunately, wakefulness is rarely monitored due to the need for additional concurrent recordings (e.g., eye tracking, EEG). Recent work has shown that strong fluctuations around 0.05Hz, hypothesized to be CSF inflow, appear in the fourth ventricle (FV) when subjects fall asleep, and that they correlate significantly with the global signal. The analysis of these fluctuations could provide an easy way to evaluate wakefulness in fMRI-only data and improve our understanding of FC during sleep. Here we evaluate this possibility using the 7T resting-state sample from the Human Connectome Project (HCP). Our results replicate the observation that fourth ventricle ultra-slow fluctuations (∼0.05Hz) with inflow-like characteristics (decreasing in intensity for successive slices) are present in scans during which subjects did not comply with instructions to keep their eyes open (i.e., drowsy scans). This is true despite the HCP data not being optimized for the detection of inflow-like effects. In addition, time-locked BOLD fluctuations of the same frequency could be detected in large portions of grey matter with a wide range of temporal delays and contribute in significant ways to our understanding of how FC changes during sleep. First, these ultra-slow fluctuations explain half of the increase in global signal that occurs during descent into sleep. Similarly, global shifts in FC between awake and sleep states are driven by changes in this slow frequency band. Second, they can influence estimates of inter-regional FC. For example, disconnection between frontal and posterior components of the Defulat Mode Network (DMN) typically reported during sleep were only detectable after regression of these ultra-slow fluctuations. Finally, we report that the temporal evolution of the power spectrum of these ultra-slow FV fluctuations can help us reproduce sample-level sleep patterns (e.g., a substantial number of subjects descending into sleep 3 minutes following scanning onset), partially rank scans according to overall drowsiness levels, and predict individual segments of elevated drowsiness (at 60 seconds resolution) with 71% accuracy.
0

Visual imagery vividness correlates with afterimage brightness and sharpness

Sharif Kronemer et al.Dec 20, 2023
+4
A
M
S
Abstract Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g., conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down, brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g., imagery, hallucinations, and dreams) that occur without bottom-up, sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
20

Manifold Learning for fMRI time-varying FC

Javier Gonzalez-Castillo et al.Jan 16, 2023
+4
I
J
J
Whole-brain functional connectivity ( FC ) measured with functional MRI (fMRI) evolve over time in meaningful ways at temporal scales going from years (e.g., development) to seconds (e.g., within-scan time-varying FC ( tvFC )). Yet, our ability to explore tvFC is severely constrained by its large dimensionality (several thousands). To overcome this difficulty, researchers seek to generate low dimensional representations (e.g., 2D and 3D scatter plots) expected to retain its most informative aspects (e.g., relationships to behavior, disease progression). Limited prior empirical work suggests that manifold learning techniques ( MLTs )-namely those seeking to infer a low dimensional non-linear surface (i.e., the manifold) where most of the data lies-are good candidates for accomplishing this task. Here we explore this possibility in detail. First, we discuss why one should expect tv FC data to lie on a low dimensional manifold. Second, we estimate what is the intrinsic dimension (i.e., minimum number of latent dimensions; ID ) of tvFC data manifolds. Third, we describe the inner workings of three state-of-the-art MLTs : Laplacian Eigenmaps ( LE ), T-distributed Stochastic Neighbor Embedding ( T-SNE ), and Uniform Manifold Approximation and Projection ( UMAP ). For each method, we empirically evaluate its ability to generate neuro-biologically meaningful representations of tvFC data, as well as their robustness against hyper-parameter selection. Our results show that tvFC data has an ID that ranges between 4 and 26, and that ID varies significantly between rest and task states. We also show how all three methods can effectively capture subject identity and task being performed: UMAP and T-SNE can capture these two levels of detail concurrently, but L E could only capture one at a time. We observed substantial variability in embedding quality across MLTs , and within- MLT as a function of hyper-parameter selection. To help alleviate this issue, we provide heuristics that can inform future studies. Finally, we also demonstrate the importance of feature normalization when combining data across subjects and the role that temporal autocorrelation plays in the application of MLTs to tvFC data. Overall, we conclude that while MLTs can be useful to generate summary views of labeled tvFC data, their application to unlabeled data such as resting-state remains challenging.
11

A unifying model for discordant and concordant results in human neuroimaging studies of facial viewpoint selectivity

Cambria Revsine et al.Feb 8, 2023
+3
J
J
C
Our ability to recognize faces regardless of viewpoint is a key property of the primate visual system. Traditional theories hold that facial viewpoint is represented by view-selective mechanisms at early visual processing stages and that representations become increasingly tolerant to viewpoint changes in higher-level visual areas. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest an additional intermediate processing stage invariant to mirror-symmetric face views. Consistent with traditional theories, human studies combining neuroimaging and multivariate pattern analysis (MVPA) methods have provided evidence of view-selectivity in early visual cortex. However, contradictory results have been reported in higher-level visual areas concerning the existence in humans of mirror-symmetrically tuned representations. We believe these results reflect low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two popular face databases. Analyses of mean image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across human neuroimaging studies of viewpoint selectivity, we constructed a network model that incorporates three biological constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network layers is sufficient to replicate findings of mirror-symmetry in high-level processing stages, as well as view-tuning in early processing stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the variable observation of mirror-symmetry in late processing stages. The model provides a unifying explanation of MVPA studies of viewpoint selectivity. We also show how common analysis choices can lead to erroneous conclusions.
Load More