YH
Yasuhiro Hirano
Author with expertise in Structure and Function of the Nuclear Pore Complex
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
4
h-index:
20
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nuclear membrane protein Bqt4 maintains nuclear envelope integrity by recruiting phosphatidic acid

Yasuhiro Hirano et al.Dec 22, 2023
+7
A
T
Y
Abstract The nuclear envelope (NE) is a permeable barrier that maintains nuclear–cytoplasmic compartmentalization and ensures nuclear function; however, it ruptures in various situations such as mechanical stress and mitosis. Although the protein components for sealing a ruptured NE have been identified, the mechanism by which lipid components are involved in this process remains to be elucidated. Here, we found that an inner nuclear membrane (INM) protein Bqt4 directly interacts with phosphatidic acid (PA) and serves as a platform for NE maintenance in the fission yeast Schizosaccharomyces pombe . The intrinsically disordered region (IDR) of Bqt4 proximal to the transmembrane domain binds to PA and forms a solid-phase aggregate in vitro . Excessive accumulation of Bqt4 IDR in INM results in membrane overproliferation and lipid droplet formation in the nucleus, leading to centromere dissociation from the NE and chromosome missegregation. Our findings suggest that Bqt4 IDR controls nuclear membrane homeostasis by recruiting PA to the INM, thereby maintaining the structural integrity of the NE.
0
Citation1
0
Save
1

The inner nuclear membrane protein Lem2 coordinates RNA degradation at the nuclear periphery

Lucía Caballero et al.May 30, 2021
+9
R
M
L
Abstract Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is unknown. Here we demonstrate that S. pombe Lem2, an NE protein, regulates nuclear exosome-mediated RNA degradation. Lem2 deletion causes accumulation of non-coding RNAs and meiotic transcripts. Indeed, an engineered exosome substrate RNA shows Lem2-dependent localization to the nuclear periphery. Lem2 does not directly bind RNA, but instead physically interacts with the exosome-targeting MTREC complex and promotes RNA recruitment. The Lem2-assisted pathway acts independently of nuclear bodies where exosome factors assemble, revealing that multiple spatially distinct degradation pathways exist. The Lem2 pathway is environmentally responsive: nutrient availability modulates Lem2 regulation of meiotic transcripts. Our data indicate that Lem2 recruits exosome co-factors to the nuclear periphery to coordinate RNA surveillance and regulates transcripts during the mitosis-to-meiosis switch.
1
Citation1
0
Save
0

Disordered region of nuclear membrane protein Bqt4 recruits phosphatidic acid to the nuclear envelope to maintain its structural integrity

Yasuhiro Hirano et al.May 31, 2024
+7
A
T
Y
The nuclear envelope (NE) is a permeable barrier that maintains nuclear–cytoplasmic compartmentalization and ensures nuclear function; however, it ruptures in various situations such as mechanical stress and mitosis. Although the protein components for sealing a ruptured NE have been identified, the mechanism by which lipid components are involved in this process remains to be elucidated. Here, we found that an inner nuclear membrane (INM) protein Bqt4 directly interacts with phosphatidic acid (PA) and serves as a platform for NE maintenance in the fission yeast Schizosaccharomyces pombe. The intrinsically disordered region (IDR) of Bqt4, proximal to the transmembrane domain, binds to PA and forms a solid aggregate in vitro. Excessive accumulation of Bqt4 IDR in INM results in membrane overproliferation and lipid droplet formation in the nucleus, leading to centromere dissociation from the NE and chromosome missegregation. Our findings suggest that Bqt4 IDR controls nuclear membrane homeostasis by recruiting PA to the INM, thereby maintaining the structural integrity of the NE.
0
Citation1
0
Save
0

CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation

Wing‐Pui Kong et al.May 30, 2024
+9
Y
M
W
Summary Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome bi-orientation for accurate chromosome segregation.
0
Citation1
0
Save
1

Chromatin loading of MCM hexamers is associated with di-/tri-methylation of histone H4K20 toward S phase entry

Yoko Hayashi‐Takanaka et al.May 14, 2021
+7
A
Y
Y
Abstract DNA replication is a key step in initiating cell proliferation. Loading hexameric complexes of minichromosome maintenance (MCM) helicase onto DNA replication origins during the G1 phase is essential for initiating DNA replication. Here, we examined MCM hexamer states during the cell cycle in human hTERT-RPE1 cells using multicolor immunofluorescence-based, single-cell plot analysis, and biochemical size fractionation. Experiments involving cell-cycle arrest at the G1 phase and release from the arrest revealed that a double MCM hexamer was formed via a single hexamer during G1 progression. A single MCM hexamer was recruited to chromatin in the early G1 phase. Another single hexamer was recruited to form a double hexamer in the late G1 phase. We further examined relationship between the MCM hexamer states and the methylation levels at lysine 20 of histone H4 (H4K20) and found that the double MCM hexamer state was correlated with di/trimethyl-H4K20 (H4K20me2/3). Inhibiting the conversion from monomethyl-H4K20 (H4K20me1) to H4K20me2/3 retained the cells in the single MCM hexamer state. Non-proliferative cells, including confluent cells or Cdk4/6 inhibitor-treated cells, also remained halted in the single MCM hexamer state. We propose that the single MCM hexamer state is a halting step in the determination of cell cycle progression.
5

A ubiquitin-proteasome pathway degrades the inner nuclear membrane protein Bqt4 to maintain nuclear membrane homeostasis

Toan Le et al.Dec 30, 2022
+4
H
Y
T
Abstract Aberrant accumulation of inner nuclear membrane (INM) proteins is associated with deformed nuclear morphology and mammalian diseases. However, the mechanisms underlying the maintenance of INM homeostasis remain poorly understood. In this study, we explored the degradation mechanisms of the INM protein, Bqt4, in the fission yeast Schizosaccharomyces pombe . We have previously shown that Bqt4 interacts with the transmembrane protein Bqt3 at the INM and is degraded in the absence of Bqt3. Here, we revealed that excess Bqt4, unassociated with Bqt3, was targeted for degradation by the ubiquitin-proteasome system localized in the nucleus and Bqt3 antagonized this process. The degradation process involved the Doa10 E3 ligase complex at the INM. Bqt4 is a tail-anchored protein and extraction from the membrane by the Cdc48 complex is required for its degradation. The C-terminal transmembrane domain of Bqt4 is necessary and sufficient for proteasome-dependent protein degradation. Accumulation of Bqt4 at the INM impaired cell viability with nuclear envelope deformation, suggesting that quantity control of Bqt4 plays an important role in nuclear membrane homeostasis. Summary statement Appropriate levels of the inner nuclear membrane protein Bqt4 are maintained by ubiquitin-proteasome-mediated degradation. Aberrant accumulation of Bqt4 disturbs nuclear membrane homeostasis.