MK
Mazen Kheirbek
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
5,896
h-index:
31
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation

Amar Sahay et al.Apr 1, 2011
+6
A
K
A
Loss-of-function studies have implicated adult-born hippocampal neurons — as opposed to those present at birth — in learning and memory and in mediating some effects of antidepressants. Experiments using an inducible genetic gain-of-function strategy to augment the survival of adult-born neurons in mice demonstrate a causal link between increased adult hippocampal neurogenesis and enhancement of specific cognitive functions. This raises the possibility that anxiety disorders and memory impairment might be treated by stimulating adult hippocampal neurogenesis. Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life1,2. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation3 and can account for up to ten per cent of the entire granule cell population4. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning5, environmental enrichment6, exercise6 and chronic treatment with antidepressants7,8,9,10. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions11, as well as some of the behavioural effects of antidepressants8,9,10,12,13, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing14,15.
0

Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus

Mazen Kheirbek et al.Mar 1, 2013
+6
N
L
M
The dentate gyrus (DG), in addition to its role in learning and memory, is increasingly implicated in the pathophysiology of anxiety disorders. Here, we show that, dependent on their position along the dorsoventral axis of the hippocampus, DG granule cells (GCs) control specific features of anxiety and contextual learning. Using optogenetic techniques to either elevate or decrease GC activity, we demonstrate that GCs in the dorsal DG control exploratory drive and encoding, not retrieval, of contextual fear memories. In contrast, elevating the activity of GCs in the ventral DG has no effect on contextual learning but powerfully suppresses innate anxiety. These results suggest that strategies aimed at modulating the excitability of the ventral DG may be beneficial for the treatment of anxiety disorders.
0

Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data

Pengcheng Zhou et al.Feb 22, 2018
+11
J
S
P
In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.
0

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel Worthley et al.Jan 1, 2015
+48
J
M
D
The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).
0
Citation575
0
Save
0

Anxiety Cells in a Hippocampal-Hypothalamic Circuit

Jessica Jimenez et al.Jan 31, 2018
+10
A
K
J
The hippocampus is traditionally thought to transmit contextual information to limbic structures where it acquires valence. Using freely moving calcium imaging and optogenetics, we show that while the dorsal CA1 subregion of the hippocampus is enriched in place cells, ventral CA1 (vCA1) is enriched in anxiety cells that are activated by anxiogenic environments and required for avoidance behavior. Imaging cells defined by their projection target revealed that anxiety cells were enriched in the vCA1 population projecting to the lateral hypothalamic area (LHA) but not to the basal amygdala (BA). Consistent with this selectivity, optogenetic activation of vCA1 terminals in LHA but not BA increased anxiety and avoidance, while activation of terminals in BA but not LHA impaired contextual fear memory. Thus, the hippocampus encodes not only neutral but also valence-related contextual information, and the vCA1-LHA pathway is a direct route by which the hippocampus can rapidly influence innate anxiety behavior.
0

Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis

Christine Denny et al.Jul 1, 2014
+7
E
M
C
Memory traces are believed to be ensembles of cells used to store memories. To visualize memory traces, we created a transgenic line that allows for the comparison between cells activated during encoding and expression of a memory. Mice re-exposed to a fear-inducing context froze more and had a greater percentage of reactivated cells in the dentate gyrus (DG) and CA3 than mice exposed to a novel context. Over time, these differences disappeared, in keeping with the observation that memories become generalized. Optogenetically silencing DG or CA3 cells that were recruited during encoding of a fear-inducing context prevented expression of the corresponding memory. Mice with reduced neurogenesis displayed less contextual memory and less reactivation in CA3 but, surprisingly, normal reactivation in the DG. These studies suggest that distinct memory traces are located in the DG and in CA3 but that the strength of the memory is related to reactivation in CA3.Video Abstracthttps://www.cell.com/cms/asset/9b8beea0-321c-4f8b-80b3-b99ae7244655/mmc3.mp4Loading ...(mp4, 36.49 MB) Download video
0
Citation485
0
Save
0

Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior

Susanne Ahmari et al.Jun 6, 2013
+5
N
T
S
What Causes Obsessive Compulsive Disorder? Obsessive compulsive disorder is a severe, chronic mental illness that affects millions of individuals. However, the mechanisms underlying this disease are still largely unknown (see the Perspective by Rauch and Carlezon Jr. ). Ahmari et al. (p. 1234 ) stimulated glutamatergic pathways between the orbitofrontal cortex and the ventromedial striatum and used grooming to assess obsessive compulsive behavior in mice. Repetitive stimulation over days triggered changes in the neuronal responses of the ventromedial striatum. Over time, the behavior of the animals became independent of stimulation and could be prevented by the antidepressant fluoxetine. Burguière et al. (p. 1243 ) investigated the neural basis of obsessive compulsive symptoms in a mutant mouse that showed excessive expression of a conditioned form of grooming.
0

Dendritic Inhibition in the Hippocampus Supports Fear Learning

Matthew Lovett-Barron et al.Feb 20, 2014
+7
M
P
M
Fear, Memory, and Place Contextual fear conditioning (CFC) is widely used as a hippocampal-dependent classical conditioning task to model human episodic memory. Lovett-Barron et al. (p. 857 ) combined in vivo imaging with pharmacology, pharmacogenetics, and optogenetics and they found that somatostatin-expressing, dendrite-targeting γ-aminobutyric acid–releasing interneurons in hippocampal area CA1 are required for CFC. During CFC, sensory features of the aversive event reach hippocampal output neurons through excitatory cortical afferents and require active inhibitory filtering to ensure that the hippocampus exclusively encodes the conditioned stimulus.
0

Microglial Remodeling of the Extracellular Matrix Promotes Synapse Plasticity

Phi Nguyen et al.Jul 1, 2020
+8
S
L
P
Synapse remodeling is essential to encode experiences into neuronal circuits. Here, we define a molecular interaction between neurons and microglia that drives experience-dependent synapse remodeling in the hippocampus. We find that the cytokine interleukin-33 (IL-33) is expressed by adult hippocampal neurons in an experience-dependent manner and defines a neuronal subset primed for synaptic plasticity. Loss of neuronal IL-33 or the microglial IL-33 receptor leads to impaired spine plasticity, reduced newborn neuron integration, and diminished precision of remote fear memories. Memory precision and neuronal IL-33 are decreased in aged mice, and IL-33 gain of function mitigates age-related decreases in spine plasticity. We find that neuronal IL-33 instructs microglial engulfment of the extracellular matrix (ECM) and that its loss leads to impaired ECM engulfment and a concomitant accumulation of ECM proteins in contact with synapses. These data define a cellular mechanism through which microglia regulate experience-dependent synapse remodeling and promote memory consolidation.
0
Citation413
0
Save
0

Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding

Nathan Danielson et al.Mar 10, 2016
+9
J
P
N

Summary

 Adult-born granule cells (abGCs) have been implicated in cognition and mood; however, it remains unknown how these cells behave in vivo. Here, we have used two-photon calcium imaging to monitor the activity of young abGCs in awake behaving mice. We find that young adult-born neurons fire at a higher rate in vivo but paradoxically exhibit less spatial tuning than their mature counterparts. When presented with different contexts, mature granule cells underwent robust remapping of their spatial representations, and the few spatially tuned adult-born cells remapped to a similar degree. We next used optogenetic silencing to confirm the direct involvement of abGCs in context encoding and discrimination, consistent with their proposed role in pattern separation. These results provide the first in vivo characterization of abGCs and reveal their participation in the encoding of novel information.
0
Citation332
0
Save
Load More