LG
Liron Ganel
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
392
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The impact of structural variation on human gene expression

Colby Chiang et al.Apr 3, 2017
Ira Hall, Donald Conrad, the GTEx consortium and colleagues identify 23,602 high-confidence structural variants (SVs) and 24,884 cis expression quantitative trait loci (eQTLs) across 13 human tissues. They estimate that SVs are the causal variant at 3.5–6.8% of eQTLs and identify 789 SVs predicted to directly alter gene expression, most of which are noncoding variants in regulatory elements. Structural variants (SVs) are an important source of human genetic diversity, but their contribution to traits, disease and gene regulation remains unclear. We mapped cis expression quantitative trait loci (eQTLs) in 13 tissues via joint analysis of SVs, single-nucleotide variants (SNVs) and short insertion/deletion (indel) variants from deep whole-genome sequencing (WGS). We estimated that SVs are causal at 3.5–6.8% of eQTLs—a substantially higher fraction than prior estimates—and that expression-altering SVs have larger effect sizes than do SNVs and indels. We identified 789 putative causal SVs predicted to directly alter gene expression: most (88.3%) were noncoding variants enriched at enhancers and other regulatory elements, and 52 were linked to genome-wide association study loci. We observed a notable abundance of rare high-impact SVs associated with aberrant expression of nearby genes. These results suggest that comprehensive WGS-based SV analyses will increase the power of common- and rare-variant association studies.
1
Citation380
0
Save
0

Rare and Common Genetic Variation Underlying Atrial Fibrillation Risk

Oliver Vad et al.Jun 26, 2024
Importance Atrial fibrillation (AF) has a substantial genetic component. The importance of polygenic risk is well established, while the contribution of rare variants to disease risk warrants characterization in large cohorts. Objective To identify rare predicted loss-of-function (pLOF) variants associated with AF and elucidate their role in risk of AF, cardiomyopathy (CM), and heart failure (HF) in combination with a polygenic risk score (PRS). Design, Setting, and Participants This was a genetic association and nested case-control study. The impact of rare pLOF variants was evaluated on the risk of incident AF. HF and CM were assessed in cause-specific Cox regressions. End of follow-up was July 1, 2022. Data were analyzed from January to October 2023. The UK Biobank enrolled 502 480 individuals aged 40 to 69 years at inclusion in the United Kingdom between March 13, 2006, and October 1, 2010. UK residents of European ancestry were included. Individuals with prior diagnosis of AF were excluded from analyses of incident AF. Exposures Rare pLOF variants and an AF PRS. Main Outcomes and Measures Risk of AF and incident HF or CM prior to and subsequent to AF diagnosis. Results A total of 403 990 individuals (218 489 [54.1%] female) with a median (IQR) age of 58 (51-63) years were included; 24 447 were diagnosed with incident AF over a median (IQR) follow-up period of 13.3 (12.4-14.0) years. Rare pLOF variants in 6 genes ( TTN , RPL3L , PKP2 , CTNNA3 , KDM5B , and C10orf71 ) were associated with AF. Of these, TTN , RPL3L , PKP2 , CTNNA3 , and KDM5B replicated in an external cohort. Combined with high PRS, rare pLOF variants conferred an odds ratio of 7.08 (95% CI, 6.03-8.28) for AF. Carriers with high PRS also had a substantial 10-year risk of AF (16% in female individuals and 24% in male individuals older than 60 years). Rare pLOF variants were associated with increased risk of CM both prior to AF (hazard ratio [HR], 3.13; 95% CI, 2.24-4.36) and subsequent to AF (HR, 2.98; 95% CI, 1.89-4.69). Conclusions and Relevance Rare and common genetic variation were associated with an increased risk of AF. The findings provide insights into the genetic underpinnings of AF and may aid in future genetic risk stratification.
0

SVScore: An Impact Prediction Tool For Structural Variation

Liron Ganel et al.Sep 6, 2016
Motivation: Structural variation (SV) is an important and diverse source of human genome variation. Over the past several years, much progress has been made in the area of SV detection, but predict-ing the functional impact of SVs discovered in whole genome sequencing (WGS) studies remains extremely challenging. Accurate SV impact prediction is especially important for WGS-based rare variant association studies and studies of rare disease. Results: Here we present SVScore, a computational tool for in silico SV impact prediction. SVScore aggregates existing per-base single nucleotide polymorphism pathogenicity scores across relevant genomic intervals for each SV in a manner that considers variant type, gene features, and uncertainty in breakpoint location. We show that in a Finnish cohort, the allele frequency spectrum of SVs with high impact scores is strongly skewed toward lower frequencies, suggesting that these variants are under purifying selection. We further show that SVScore identifies deleterious variants more effectively than naive alternative methods. Finally, our results indicate that high-scoring tandem duplications may be under surprisingly strong selection relative to high-scoring deletions, suggesting that duplications may be more deleterious than previously thought. In conclusion, SVScore provides pathogenicity prediction for SVs that is both informative and meaningful for understanding their functional role in disease. Availability: SVScore is implemented in Perl and available freely at {{http://www.github.com/lganel/SVScore}} for use under the MIT license. Contact: ihall@wustl.edu
1

Association of Structural Variation with Cardiometabolic Traits in Finns

Yong Cheng et al.Dec 13, 2020
The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low frequency SVs for association with 116 quantitative traits, and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including two novel loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB gene promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p=1.47x10-54), and is also associated with increased levels of total cholesterol (p=1.22x10-28) and 14 additional cholesterol-related traits, and (2) a multiallelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p=4.81x10-21) and alanine (p=6.14x10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs), and one linking recurrent HP gene deletion and cholesterol levels (p=6.24x10-10), which was also found to be strongly associated with increased glycoprotein level (p=3.53x10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.
0

The impact of structural variation on human gene expression

Colby Chiang et al.Jun 9, 2016
Structural variants (SVs) are an important source of human genetic diversity but their contribution to traits, disease, and gene regulation remains unclear. The Genotype-Tissue Expression (GTEx) project presents an unprecedented opportunity to address this question due to the availability of deep whole genome sequencing (WGS) and multi-tissue RNA-seq data from 147 individuals. We used comprehensive methods to identify 24,157 high confidence SVs, and mapped cis expression quantitative trait loci (eQTLs) in 13 tissues via joint analysis of SVs, single nucleotide (SNV) and short insertion/deletion (indel) variants. We identified 24,801 eQTLs affecting the expression of 10,101 distinct genes. Based on haplotype structure and heritability partitioning, we estimate that SVs are the causal variant at 3.3-7.0% of eQTLs, which is nearly an order of magnitude higher than prior estimates from low coverage WGS and represents a 26- to 54-fold enrichment relative to their scarcity in the genome. Expression-altering SVs also have significantly larger effect sizes than SNVs and indels. We identified 787 putatively causal SVs predicted to directly alter gene expression, most of which (88.3%) are noncoding variants that show significant enrichment at enhancers and other regulatory elements. By evaluating linkage disequilibrium between SVs, SNVs and indels, we nominate 49 SVs as plausible causal variants at published genome-wide association study (GWAS) loci. Remarkably, 29.9% of the common SV-eQTLs are not well tagged by flanking SNVs, and we observe a notable abundance (relative to SNVs and indels) of rare, high impact SVs associated with aberrant expression of nearby genes. These results suggest that comprehensive WGS-based SV analyses will increase the power of both common and rare variant association studies.