BL
Belén Lorente-Galdós
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
3,446
h-index:
23
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Great ape genetic diversity and population history

Javier Prado-Martinez et al.Jul 1, 2013
+70
J
P
J
High-coverage sequencing of 79 (wild and captive) individuals representing all six non-human great ape species has identified over 88 million single nucleotide polymorphisms providing insight into ape genetic variation and evolutionary history and enabling comparison with human genetic diversity. In an effort to provide insights into great ape genetic variation, the authors sequence 79 wild- and captive-born individuals from across all six great ape species and seven subspecies. Their data and analyses shed light on population structure and gene flow, inbreeding, inferred dynamics of effective population sizes and the differences in the rate of gene loss among the great apes. This new catalogue of great ape genome diversity provides a valuable resource for evolutionary and conservation studies. Most great ape genetic variation remains uncharacterized1,2; however, its study is critical for understanding population history3,4,5,6, recombination7, selection8 and susceptibility to disease9,10. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
0
Citation882
0
Save
0

Elephant shark genome provides unique insights into gnathostome evolution

Byrappa Venkatesh et al.Jan 7, 2014
+30
V
A
B
The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the ‘living fossil’ coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity. Whole-genome analysis of the elephant shark, a cartilaginous fish, shows that it is the slowest evolving of all known vertebrates, lacks critical bone formation genes and has an unusual adaptive immune system. The elephant shark (Callorhinchus milii) is a cartilaginous fish native to the temperate waters off southern Australia and New Zealand, living at depths of 200 to 500 metres and migrating into shallow waters during spring for breeding. The genome sequence is published in this issue of Nature. Comparison with other vertebrate genomes shows that it is the slowest evolving genome of all known vertebrates — coelacanth included. Genome analysis points to an unusual adaptive immune system lacking the CD4 receptor and some associated cytokines, indicating that cartilaginous fishes possess a primordial gnathostome adaptive immune system. Also absent are genes encoding secreted calcium-binding phosphoproteins, in line with the absence of bone in cartilaginous fish.
0
Citation678
0
Save
0

Integrative functional genomic analysis of human brain development and neuropsychiatric risks

Mingfeng Li et al.Dec 14, 2018
+97
Y
G
M
INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C , SATB2 , and TCF4 , with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease. Spatiotemporal dynamics of human brain development and neuropsychiatric risks. Human brain development begins during embryonic development and continues through adulthood (top). Integrating data modalities (bottom left) revealed age- and cell type–specific properties and global patterns of transcriptional dynamics, including a late fetal transition (bottom middle). We related the variation in gene expression (brown, high; purple, low) to regulatory elements in the fetal and adult brains, cell type–specific signatures, and genetic loci associated with neuropsychiatric disorders (bottom right; gray circles indicate enrichment for corresponding features among module genes). Relationships depicted in this panel do not correspond to specific observations. CBC, cerebellar cortex; STR, striatum; HIP, hippocampus; MD, mediodorsal nucleus of thalamus; AMY, amygdala.
0
Citation656
0
Save
0

The genome of melon ( Cucumis melo L.)

Jordi García-Más et al.Jul 2, 2012
+32
G
M
J
We report the genome sequence of melon, an important horticultural crop worldwide. We assembled 375 Mb of the double-haploid line DHL92, representing 83.3% of the estimated melon genome. We predicted 27,427 protein-coding genes, which we analyzed by reconstructing 22,218 phylogenetic trees, allowing mapping of the orthology and paralogy relationships of sequenced plant genomes. We observed the absence of recent whole-genome duplications in the melon lineage since the ancient eudicot triplication, and our data suggest that transposon amplification may in part explain the increased size of the melon genome compared with the close relative cucumber. A low number of nucleotide-binding site–leucine-rich repeat disease resistance genes were annotated, suggesting the existence of specific defense mechanisms in this species. The DHL92 genome was compared with that of its parental lines allowing the quantification of sequence variability in the species. The use of the genome sequence in future investigations will facilitate the understanding of evolution of cucurbits and the improvement of breeding strategies.
0
Citation655
0
Save
0

Genome Sequencing Highlights the Dynamic Early History of Dogs

Adam Freedman et al.Jan 16, 2014
+27
H
A
A
To identify genetic changes underlying dog domestication and reconstruct their early evolutionary history, we generated high-quality genome sequences from three gray wolves, one from each of the three putative centers of dog domestication, two basal dog lineages (Basenji and Dingo) and a golden jackal as an outgroup. Analysis of these sequences supports a demographic model in which dogs and wolves diverged through a dynamic process involving population bottlenecks in both lineages and post-divergence gene flow. In dogs, the domestication bottleneck involved at least a 16-fold reduction in population size, a much more severe bottleneck than estimated previously. A sharp bottleneck in wolves occurred soon after their divergence from dogs, implying that the pool of diversity from which dogs arose was substantially larger than represented by modern wolf populations. We narrow the plausible range for the date of initial dog domestication to an interval spanning 11–16 thousand years ago, predating the rise of agriculture. In light of this finding, we expand upon previous work regarding the increase in copy number of the amylase gene (AMY2B) in dogs, which is believed to have aided digestion of starch in agricultural refuse. We find standing variation for amylase copy number variation in wolves and little or no copy number increase in the Dingo and Husky lineages. In conjunction with the estimated timing of dog origins, these results provide additional support to archaeological finds, suggesting the earliest dogs arose alongside hunter-gathers rather than agriculturists. Regarding the geographic origin of dogs, we find that, surprisingly, none of the extant wolf lineages from putative domestication centers is more closely related to dogs, and, instead, the sampled wolves form a sister monophyletic clade. This result, in combination with dog-wolf admixture during the process of domestication, suggests that a re-evaluation of past hypotheses regarding dog origins is necessary.
0
Citation562
0
Save
45

Spatial and single-cell transcriptional landscape of human cerebellar development

Kimberly Aldinger et al.Jul 1, 2020
+18
Z
S
K
ABSTRACT Cerebellar development and function require precise regulation of molecular and cellular programs to coordinate motor functions and integrate network signals required for cognition and emotional regulation. However, molecular understanding of human cerebellar development is limited. Here, we combined spatially resolved and single-cell transcriptomics to systematically map the molecular, cellular, and spatial composition of early and mid-gestational human cerebellum. This enabled us to transcriptionally profile major cell types and examine the dynamics of gene expression within cell types and lineages across development. The resulting ‘Developmental Cell Atlas of the Human Cerebellum’ demonstrates that the molecular organization of the cerebellar anlage reflects cytoarchitecturally distinct regions and developmentally transient cell types that are insufficiently captured in bulk transcriptional profiles. By mapping disease genes onto cell types, we implicate the dysregulation of specific cerebellar cell types, especially Purkinje cells, in pediatric and adult neurological disorders. These data provide a critical resource for understanding human cerebellar development with implications for the cellular basis of cerebellar diseases.
45
Citation8
0
Save
0

Disruption of the transcription factorNEUROD2causes an autism syndrome via cell-autonomous defects in cortical projection neurons

Karen Runge et al.Apr 12, 2018
+35
S
R
K
Abstract We identified seven families associating NEUROD2 pathogenic mutations with ASD and intellectual disability. To get insight into the pathophysiological mechanisms, we analyzed cortical development in Neurod2 KO mice. Cortical projection neurons (CPNs) over-migrated during embryogenesis, inducing abnormal thickness and laminar positioning of cortical layers. At juvenile ages, dendritic spine turnover and intrinsic excitability were increased in L5 CPNs. Differentially expressed genes in Neurod2 KO mice were enriched for voltage-gated ion channels, and the human orthologs of these genes were strongly associated with ASD. Furthermore, adult Neurod2 KO mice exhibited core ASD-like behavioral abnormalities. Finally, by generating Neurod2 conditional mutant mice we demonstrate that forebrain excitatory neuron-specific Neurod2 deletion recapitulates cellular and behavioral ASD phenotypes found in full KO mice. Our findings demonstrate crucial roles for Neurod2 in cortical development and function, whose alterations likely account for ASD and related symptoms in the newly defined NEUROD2 mutation syndrome.
0
Citation5
0
Save
0

Regulation of Prefrontal Patterning, Connectivity and Synaptogenesis by Retinoic Acid

Mikihito Shibata et al.Dec 31, 2019
+5
B
K
M
The prefrontal cortex (PFC) and its reciprocal connections with the mediodorsal thalamus (MD) are crucial for cognitive flexibility and working memory and are thought to be altered in several disorders such as autism spectrum disorder and schizophrenia. While developmental mechanisms governing regional patterning of the rodent cerebral cortex have been characterized, the mechanisms underlying the development of PFC-MD connectivity and the lateral expansion of PFC with distinct granular layer 4 in anthropoid primates have not been elucidated. Here we report increased concentration of retinoic acid (RA), a signaling molecule involved in brain development and function in the prospective PFC areas of human and macaque, compared to mouse, during mid-fetal development, a crucial period for cortical circuit assembly. In addition, we observed the lateral expansion of RA synthesizing enzyme, ALDH1A3, expression in mid-fetal macaque and human frontal cortex, compared to mouse. Furthermore, we found that enrichment of RA signaling is restricted to the prospective PFC by CYP26B1, a gene encoding an RA-catabolizing enzyme upregulated in the mid-fetal motor cortex. Gene deletion in mice revealed that RA signaling through anteriorly upregulated RA receptors, Rxrg and Rarb, and Cyp26b1-dependent catabolism is required for the proper molecular patterning of PFC and motor areas, the expression of the layer 4 marker RORB, intra-PFC synaptogenesis, and the development of reciprocal PFC-MD connectivity. Together, these findings reveal a critical role for RA signaling in PFC development and, potentially, its evolutionary expansion.