SF
Scott Foy
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
215
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

St. Jude Cloud—a Pediatric Cancer Genomic Data Sharing Ecosystem

Clay McLeod et al.Aug 24, 2020
ABSTRACT Effective data sharing is key to accelerating research that will improve the precision of diagnoses, efficacy of treatments and long-term survival of pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud ( https://www.stjude.cloud ), a cloud-based data sharing ecosystem developed via collaboration between St. Jude Children’s Research Hospital, DNAnexus, and Microsoft, for accessing, analyzing and visualizing genomic data from >10,000 pediatric cancer patients, long-term survivors of pediatric cancer and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabyes on St. Jude Cloud include 12,104 whole genomes, 7,697 whole exomes and 2,202 transcriptomes, which are freely available to researchers worldwide. The resource is expanding rapidly with regular data uploads from St. Jude’s prospective clinical genomics programs, providing public access as soon as possible rather than holding data back until publication. Three interconnected apps within the St. Jude Cloud ecosystem—Genomics Platform, Pediatric Cancer Knowledgebase (PeCan) and Visualization Community—provide a unique experience for simultaneously performing advanced data analysis in the cloud and enhancing the pediatric cancer knowledgebase. We demonstrate the value of the St. Jude Cloud ecosystem through use cases that classify 48 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 subtypes of pediatric cancer.
25
Citation8
0
Save
0

A shift in aggregation avoidance strategy marks a long-term direction to protein evolution

Scott Foy et al.Aug 16, 2017
Abstract To detect a direction to evolution, without the pitfalls of reconstructing ancestral states, we need to compare “more evolved” to “less evolved” entities. But because all extant species have the same common ancestor, none are chronologically more evolved than any other. However, different gene families were born at different times, allowing us to compare young protein-coding genes to those that are older and hence have been evolving for longer. To be retained during evolution, a protein must not only have a function, but must also avoid toxic dysfunction such as protein aggregation. There is conflict between the two requirements; hydrophobic amino acids form the cores of protein folds, but also promote aggregation. Young genes avoid strongly hydrophobic amino acids, which is presumably the simplest solution to the aggregation problem. Here we show that young genes’ few hydrophobic residues are clustered near one another along the primary sequence, presumably to assist folding. The higher aggregation risk created by the higher hydrophobicity of older genes is counteracted by more subtle effects in the ordering of the amino acids, including a reduction in the clustering of hydrophobic residues until they eventually become more interspersed than if distributed randomly. This interspersion has previously been reported to be a general property of proteins, but here we find that it is restricted to old genes. Quantitatively, the index of dispersion delineates a gradual trend, i.e. a decrease in the clustering of hydrophobic amino acids over billions of years.
0
Citation3
0
Save