Abstract Marseilleviridae is a family of the new order of giant viruses, which exhibit a characteristic inner membrane. Here, we investigated the entire structure of tokyovirus, a species of Marseillevirus at 7.7 Å resolution using 1 MV high-voltage cryo-EM and single particle analysis. The minor capsid lattice formed by five proteins, shows a novel structure compared to other icosahedral giant viruses. Under the minor capsid proteins, scaffold proteins connect two five-fold vertices and interact with the inner membrane. Previously reported giant viruses utilise “tape measure” proteins, proposed to control its capsid size, which could not be identified in tokyovirus, but scaffold proteins appear to perform a similar role. A density on top of the major capsid protein was identified, which suggested to be a 14kDa glycoprotein. Our observations suggest that the icosahedral particle of Marseilleviridae is constructed with a novel capsid protein network, which allows the characteristic inner membrane structure.