MG
Marc Goodman
Author with expertise in Genomic Studies and Treatment of Ovarian Carcinoma
Cedars-Sinai Medical Center, Cancer Research Center, National Cancer Institute
+ 15 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
3,654
h-index:
104
/
i10-index:
390
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

Mark Rubin et al.Nov 20, 2020
+753
N
M
M

Summary

 DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
2
Citation852
0
Save
6

Genomic and Functional Approaches to Understanding Cancer Aneuploidy

Alison Taylor et al.Nov 20, 2020
+736
G
J
A
Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.
6
Citation844
0
Save
4

Pathogenic Germline Variants in 10,389 Adult Cancers

Kuan‐lin Huang et al.Dec 2, 2020
+755
Y
R
K
We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.
4
Paper
Citation674
0
Save
4

A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

Anil Korkut et al.Nov 20, 2020
+740
A
R
A
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.
4
Paper
Citation524
0
Save
0

Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer

Ellen Goode et al.Aug 25, 2024
+96
K
M
E

Importance

 Cytotoxic CD8+tumor-infiltrating lymphocytes (TILs) participate in immune control of epithelial ovarian cancer; however, little is known about prognostic patterns of CD8+TILs by histotype and in relation to other clinical factors. 

Objective

 To define the prognostic role of CD8+TILs in epithelial ovarian cancer. 

Design, Setting, and Participants

 This was a multicenter observational, prospective survival cohort study of the Ovarian Tumor Tissue Analysis Consortium. More than 5500 patients, including 3196 with high-grade serous ovarian carcinomas (HGSOCs), were followed prospectively for over 24 650 person-years. 

Exposures

 Following immunohistochemical analysis, CD8+TILs were identified within the epithelial components of tumor islets. Patients were grouped based on the estimated number of CD8+TILs per high-powered field: negative (none), low (1-2), moderate (3-19), and high (≥20). CD8+TILs in a subset of patients were also assessed in a quantitative, uncategorized manner, and the functional form of associations with survival was assessed using penalized B-splines. 

Main Outcomes and Measures

 Overall survival time. 

Results

 The final sample included 5577 women; mean age at diagnosis was 58.4 years (median, 58.2 years). Among the 5 major invasive histotypes, HGSOCs showed the most infiltration. CD8+TILs in HGSOCs were significantly associated with longer overall survival; median survival was 2.8 years for patients with no CD8+TILs and 3.0 years, 3.8 years, and 5.1 years for patients with low, moderate, or high levels of CD8+TILs, respectively (Pvalue for trend = 4.2 × 10−16). A survival benefit was also observed among women with endometrioid and mucinous carcinomas, but not for those with the other histotypes. Among HGSOCs, CD8+TILs were favorable regardless of extent of residual disease following cytoreduction, known standard treatment, and germlineBRCA1pathogenic mutation, but were not prognostic forBRCA2mutation carriers. Evaluation of uncategorized CD8+TIL counts showed a near-log-linear functional form. 

Conclusions and Relevance

 This study demonstrates the histotype-specific nature of immune infiltration and provides definitive evidence for a dose-response relationship between CD8+TILs and HGSOC survival. That the extent of infiltration is prognostic, not merely its presence or absence, suggests that understanding factors that drive infiltration will be the key to unraveling outcome heterogeneity in this cancer.
0
Citation293
0
Save
3

Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

Joshua Campbell et al.Dec 8, 2020
+751
R
C
J
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.
3
Paper
Citation275
0
Save
0

Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study

Peter Rambau et al.Jun 27, 2024
+95
M
R
P
Abstract We aimed to validate the prognostic association of p16 expression in ovarian high‐grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical‐grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset ( n = 2280) mostly representing HGSC ( n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis‐associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47–2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30–2.75, p = 0.004), while absence was associated with shorter OS in low‐grade serous carcinomas (HR: 2.95, 95% CI 1.61–5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype‐specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low‐grade serous carcinoma justifies CDK4 inhibition.
0

Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE)

Aline Talhouk et al.Aug 25, 2024
+122
C
J
A
Abstract Purpose: Gene expression–based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. Experimental Design: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. Results: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with &gt;95% accuracy that was maintained in all analytic and biological validations. Conclusions: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications. See related commentary by McMullen et al., p. 5271
0
Citation50
0
Save
1

Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer

Juliet French et al.Jan 8, 2021
+71
Y
S
J
// Juliet D. French 1,* , Sharon E. Johnatty 1,* , Yi Lu 1,* , Jonathan Beesley 1 , Bo Gao 2 , Murugan Kalimutho 1 , Michelle J. Henderson 3 , Amanda J. Russell 3 , Siddhartha Kar 4 , Xiaoqing Chen 1 , Kristine M. Hillman 1 , Susanne Kaufmann 1 , Haran Sivakumaran 1 , Martin O'Reilly 5 , Chen Wang 6 , Darren J. Korbie 7 , Australian Ovarian Cancer Study Group 1,2,8 , Australian Cancer Study 1 , Diether Lambrechts 9,10 , Evelyn Despierre 10 , Els Van Nieuwenhuysen 10 , Sandrina Lambrechts 10 , Ignace Vergote 10 , Beth Karlan 11 , Jenny Lester 11 , Sandra Orsulic 11 , Christine Walsh 11 , Peter A. Fasching 12,13 , Matthias W. Beckmann 12 , Arif B. Ekici 42 , Alexander Hein 12 , Keitaro Matsuo 14 , Satoyo Hosono 14 , Jacobus Pisterer 15 , Peter Hillemanns 16 , Toru Nakanishi 17 , Yasushi Yatabe 18 , Marc T. Goodman 19 , Galina Lurie 20 , Rayna K. Matsuno 20 , Pamela J. Thompson 19 , Tanja Pejovic 21 , Yukie Bean 21 , Florian Heitz 22,23 , Philipp Harter 22,23 , Andreas du Bois 22,23 , Ira Schwaab 24 , Estrid Hogdall 25,26 , Susanne K. Kjaer 25,27 , Allan Jensen 25 , Claus Hogdall 27 , Lene Lundvall 27 , Svend Aage Engelholm 28 , Bob Brown 29 , James M. Flanagan 29 , Michelle D. Metcalf 29 , Nadeem Siddiqui 30 , Thomas Sellers 31 , Brooke Fridley 32 , Julie Cunningham 33 , Joellen M. Schildkraut 34,35 , Ed Iversen 36 , Rachel Palmieri Weber 34 , Donal Brennan 37 , Andrew Berchuck 38 , Paul Pharoah 4,39 , Paul Harnett 40 , Murray D. Norris 3 , Michelle Haber 3 , Ellen L. Goode 41 , Jason S. Lee 1 , Kum Kum Khanna 1 , Kerstin B. Meyer 5 , Georgia Chenevix-Trench 1,*,** , Anna deFazio 2,*,** , Stacey L. Edwards 1,*,** , Stuart MacGregor 1,*,** and on behalf of the Ovarian Cancer Association Consortium 1 QIMR Berghofer Medical Research Institute, Brisbane, Australia 2 Department of Gynaecological Oncology and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia 3 Children's Cancer Institute Australia, Randwick, Australia 4 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK 5 Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK 6 Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA 7 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia 8 Peter MacCallum Cancer Centre, Melbourne, Australia 9 Vesalius Research Center, VIB, Leuven, Belgium and Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium 10 Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium 11 Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA 12 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen- Nuremberg, Comprehensive Cancer Center Erlangen-Nuremberg, Erlangen, Germany 13 Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA 14 Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan 15 Zentrum für Gynäkologische Onkologie, Kiel, Germany 16 Departments of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany 17 Department of Gynecology, Aichi Cancer Center Central Hospital, Nagoya, Aichi, Japan 18 Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Central Hospital, Nagoya, Aichi, Japan 19 Cancer Prevention and Control Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA 20 Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA 21 Department of Obstetrics and Gynecology, Oregon Health and Science University and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA 22 Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany 23 Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany 24 Institut für Humangenetik Wiesbaden, Germany 25 Danish Cancer Society Research Center, Unit of Virus, Lifestyle and Genes, Copenhagen, Denmark 26 Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark 27 Department of Gynecology, Rigshospitalet, University of Copenhagen, Denmark 28 Department of Oncology, Rigshospitalet, University of Copenhagen, Denmark 29 Department of Surgery and Cancer, Imperial College London, London, UK 30 North Glasgow University Hospitals NHS Trust, Stobhill Hospital, Glasgow, UK 31 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA 32 Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA 33 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA 34 Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA 35 Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA 36 Department of Statistical Science, Duke University, Durham, NC, USA 37 Queensland Centre for Gynaecological Cancer, Brisbane, Australia 38 Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA 39 Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK 40 Crown Princess Mary Cancer Centre and Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Sydney, Australia 41 Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA 42 Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany * These authors contributed equally to the study and are listed alphabetically ** These authors co-directed the study and are listed alphabetically Correspondence to: Georgia Chenevix-Trench, email: // Anna deFazio, email: // Stacey L. Edwards, email: // Stuart MacGregor, email: // Keywords : epithelial ovarian cancer, progression free survival, genome-wide association study, PSIP1, chromosome conformation capture Received : January 14, 2016 Accepted : January 21, 2016 Published : January 31, 2016 Abstract Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10 -5 , HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1 , CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1 . Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.
0

Large-Scale Evaluation of Common Variation in Regulatory T Cell–Related Genes and Ovarian Cancer Outcome

Bridget Charbonneau et al.Aug 25, 2024
+102
K
I
B
Abstract The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR, 1.42; 95% confidence interval (CI), 1.22–1.64; P = 5.7 × 10−6], rs791587 (HR, 1.36; 95% CI, 1.17–1.57; P = 6.2 × 10−5), rs2476491 (HR, = 1.40; 95% CI, 1.19–1.64; P = 5.6 × 10−5), and rs10795763 (HR, 1.35; 95% CI, 1.17–1.57; P = 7.9 × 10−5), and for clear cell carcinoma and CTLA4 SNP rs231775 (HR, 0.67; 95% CI, 0.54–0.82; P = 9.3 × 10−5) after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs seem to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid epithelial ovarian cancer. Cancer Immunol Res; 2(4); 332–40. ©2014 AACR.
Load More