VH
Victoria Harman
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
11
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies

Ibrahim Elsemman et al.Jun 11, 2021
+12
P
A
I
When conditions change, unicellular organisms rewire their metabolism to sustain cell maintenance and cellular growth. Such rewiring may be understood as resource re-allocation under cellular constraints. Eukaryal cells contain metabolically active organelles such as mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular constraints remain to be determined for such cells. Here we developed a comprehensive metabolic model of the yeast cell, based on its full metabolic reaction network extended with protein synthesis and degradation reactions (16304 reactions in total). The model predicts metabolic fluxes and corresponding protein expression by constraining compartment-specific protein pools and maximising growth rate. Comparing model predictions with quantitative experimental data revealed that under glucose limitation, a mitochondrial constraint limits growth at the onset of ethanol formation - known as the Crabtree effect. Under sugar excess, however, a constraint on total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies condition-dependent and compartment-specific constraints that can explain metabolic strategies and protein expression profiles from growth rate optimization, providing a framework to understand metabolic adaptation in eukaryal cells.
1
Paper
Citation8
0
Save
4

Decoding the absolute stoichiometric composition and structural plasticity of α-carboxysomes

Yaqi Sun et al.Dec 7, 2021
+5
J
V
Y
Abstract Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO 2 -fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus neapolitanus serves as a model system in fundamental studies and synthetic engineering of carboxysomes. Here we adopt a QconCAT-based quantitative mass spectrometry to determine the absolute stoichiometric composition of native α-carboxysomes from H. neapolitanus . We further performed an in-depth comparison of the protein stoichiometry of native and recombinant α-carboxysomes heterologously generated in Escherichia coli to evaluate the structural variability and remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new contexts for biotechnological applications.
4
Citation3
0
Save
1

Synthetic biology meets proteomics: Construction of a la carte QconCATs for absolute protein quantification

James Johnson et al.Apr 13, 2021
+5
Y
C
J
We report a new approach to the assembly and construction of QconCATs, quantitative concatamers for proteomic applications that yield stoichiometric quantities of sets of stable isotope-labelled internal standards. The new approach is based on synthetic biology precepts of biobricks, making use of loop assembly to construct larger entities from individual biobricks. It offers a major gain in flexibility of QconCAT implementation and enables rapid and efficient editability that permits, for example, substitution of one peptide for another. The basic building block (a Qbrick) is a segment of DNA that encodes two or more quantification peptides for a single protein, readily held in a repository as a library resource. These Qbricks are then assembled in a one tube ligation reaction that enforces the order of assembly, to yield short QconCATs that are useable for small quantification products. However, the DNA context of the short also allows a second cycle of assembly such that five different short QconCATs can be assembled into a longer QconCAT in a second, single tube ligation. From a library of Qbricks, a bespoke QconCAT can be assembled quickly and efficiently in a form suitable for expression and labelling in vivo or in vitro. We refer to this approach as the ALACAT strategy as it permits a la carte design of quantification standards.