MC
Michaela Conley
Author with expertise in Epidemiology and Pathogenesis of Respiratory Viral Infections
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
8
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
29

Helical Ordering of Envelope Associated Proteins and Glycoproteins in Respiratory Syncytial Virus Filamentous Virions

Michaela Conley et al.Aug 4, 2021
+10
J
J
M
Abstract Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Treatments for RSV disease are however limited and efforts to produce an effective vaccine have so far been unsuccessful. Understanding RSV virion structure is an important prerequisite for developing interventions to treat or prevent infection but has been challenging because of the fragility of virions propagated in cell culture. Here we show, using cryogenic electron microscopy (cryoEM) and cryogenic electron tomography (cryoET) of RSV particles cultivated directly on transmission electron microscopy (TEM) grids, that there is extensive helical symmetry in RSV filamentous virions. We have calculated a 16 Å resolution three-dimensional reconstruction of the viral envelope, targeting the matrix protein (M) that forms an endoskeleton below the viral membrane. These data define a helical lattice of M proteins, showing how M is oriented relative to the viral envelope and that helical ordering of viral glycoproteins that stud the viral envelope is coordinated by the M layer. Moreover, the helically ordered viral glycoproteins in RSV filamentous virions cluster in pairs, which may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV filamentous virions. Overall, the structural data obtained provides molecular insight into the organization of the virion and the mechanism of its assembly.
29
Citation8
0
Save
0

Calicivirus VP2 forms a portal to mediate endosome escape

Michaela Conley et al.Aug 23, 2018
+4
L
M
M
To initiate the infectious process, many viruses enter their host cells by triggering endocytosis following receptor engagement. The mechanism by which non-enveloped viruses, such as the caliciviruses, escape the endosome is however poorly understood. The Caliciviridae include many important human and animal pathogens, most notably norovirus, the cause of winter vomiting disease. Here we show that VP2, a minor capsid protein encoded by all caliciviruses, forms a large portal assembly at a unique three-fold symmetry axis following receptor engagement. This feature surrounds an open pore in the capsid shell. We hypothesise that the VP2 portal complex is the means by which the virus escapes the endosome, penetrating the endosomal membrane to release the viral genome into the cytoplasm. Cryogenic electron microscopy (cryoEM) and asymmetric reconstruction were used to investigate structural changes in the capsid of feline calicivirus (FCV) that occur when the virus binds to its cellular receptor junctional adhesion molecule-A (fJAM-A). Near atomic-resolution structures were calculated for the native virion alone and decorated with soluble receptor fragments. We present atomic models of the major capsid protein VP1 in the presence and absence of fJAM-A, revealing the contact interface and conformational changes brought about by the interaction. Furthermore, we have calculated an atomic model of the portal protein VP2 and revealed the structural changes in VP1 that lead to pore formation. While VP2 was known to be critical for the production of infectious virus, its function has been hitherto undetermined. Our finding that VP2 assembles a portal that is likely responsible for endosome escape represents a major step forward in our understanding of both the Caliciviridae and icosahedral RNA containing viruses in general.
0

Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome

Jordan Ranum et al.Dec 12, 2023
+13
F
M
J
Abstract Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These D elVG-encoded pr oteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.
1

The cryo-EM structure of vesivirus 2117 highlights functional variations in entry pathways for viruses in different clades of the Vesivirus genus

Hazel Sutherland et al.Feb 6, 2021
+3
E
M
H
Abstract Vesivirus 2117 is an adventitious agent that has been responsible for lost productivity in biopharmaceutical production following contamination of Chinese hamster ovary cell cultures in commercial bioreactors. A member of the Caliciviridae , 2117 is classified within the Vesivirus genus in a clade that includes canine and mink caliciviruses but is distinct from the vesicular exanthema of swine clade, which includes the extensively studied feline calicivirus (FCV). We have used cryogenic electron microscopy (cryo-EM) to determine the structure of the capsid of this small, icosahedral, positive-sense RNA containing virus. We show that the outer face of the dimeric capsomeres, which contains the receptor binding site and major immunodominant epitopes in all caliciviruses studied thus far, is quite different from that of FCV. This is a consequence of a 22 amino-acid insertion in the sequence of the FCV major capsid protein that forms a ‘cantilevered arm’, which plays an important role in both receptor engagement and undergoes structural rearrangements thought to be important for genome delivery to the cytosol. Our data highlight a potentially important difference in the attachment and entry pathways employed by the different clades of the Vesivirus genus.