BS
Blair Sullivan
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
10
h-index:
15
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Meta-analysis of metagenomes via machine learning and assembly graphs reveals strain switches in Crohn’s disease

Taylor Reiter et al.Jul 5, 2022
+10
L
Y
T
Abstract Microbial strains have closely related genomes but may have different phenotypes in the same environment. Shotgun metagenomic sequencing can capture the genomes of all strains present in a community but strain-resolved analysis from shotgun sequencing alone remains difficult. We developed an approach to identify and interrogate strain-level differences in groups of metagenomes. We use this approach to perform a meta-analysis of stool microbiomes from individuals with and without inflammatory bowel disease (IBD; Crohn’s disease, ulcerative colitis; n = 605), a disease for which there are not specific microbial biomarkers but some evidence that microbial strain variation may stratify by disease state. We first developed a machine learning classifier based on compressed representations of complete metagenomes (FracMinHash sketches) and identified genomes that correlate with IBD subtype. To rescue variation that may not have been present in the genomes, we then used assembly graph genome queries to recover strain variation for correlated genomes. Lastly, we developed a novel differential abundance framework that works directly on the assembly graph to uncover all sequence variants correlated with IBD. We refer to this approach as dominating set differential abundance analysis and have implemented it in the spacegraphcats software package . Using this approach, we identified five bacterial strains that are associated with Crohn’s disease. Our method captures variation within the entire sequencing data set, allowing for discovery of previously hidden disease associations.
1
Citation7
0
Save
53

Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms

Milton Pividori et al.Jul 6, 2021
+14
M
Y
M
Abstract Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies. In this regard, the role of individual genes in disease-relevant mechanisms can be hypothesized with transcriptome-wide association studies (TWAS), which have represented a significant step forward in testing the mediating role of gene expression in GWAS associations. However, modern models of the architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. This representation is based on modules of genes with similar expression patterns across the same conditions. We observed that diseases were significantly associated with gene modules expressed in relevant cell types, and our approach was accurate in predicting known drug-disease pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid regulation, we found that functionally important players lacked TWAS associations but were prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes, PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene strategies.
53
Citation3
0
Save
0

Exploring neighborhoods in large metagenome assembly graphs reveals hidden sequence diversity

C. Brown et al.Nov 5, 2018
+3
M
D
C
Genomes computationally inferred from large metagenomic data sets are often incomplete and may be missing functionally important content and strain variation. We introduce an information retrieval system for large metagenomic data sets that exploits the sparsity of DNA assembly graphs to efficiently extract subgraphs surrounding an inferred genome. We apply this system to recover missing content from genome bins and show that substantial genomic sequence variation is present in a real metagenome. Our software implementation is available at spacegraphcats under the 3-Clause BSD License.
25

Hetnet connectivity search provides rapid insights into how two biomedical entities are related

Daniel Himmelstein et al.Jan 7, 2023
+9
M
Y
D
Hetnets, short for "heterogeneous networks", contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet connects 11 types of nodes - including genes, diseases, drugs, pathways, and anatomical structures - with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious not only how metformin is related to breast cancer, but also how the GJA1 gene might be involved in insomnia. We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any two nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). We find that predictions are broadly similar to those from previously described supervised approaches for certain node type pairs. Scoring of individual paths is based on the most specific paths of a given type. Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. We implemented the method on Hetionet and provide an online interface at https://het.io/search . We provide an open source implementation of these methods in our new Python package named hetmatpy .