OM
Olena Morozova
Author with expertise in Gliomas
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
6,572
h-index:
12
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genetic landscape of high-risk neuroblastoma

Trevor Pugh et al.Jan 20, 2013
John Maris, Matthew Meyerson, Marco Marra and colleagues report results of a large-scale sequencing study of neuroblastoma. They observe a low median exonic mutation frequency and strikingly few recurrently mutated genes in these tumors, highlighting challenges for developing targeted therapeutic strategies based on frequently mutated oncogenic drivers. Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.
0
Citation1,071
0
Save
0

Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma

Kathryn Taylor et al.Apr 6, 2014
Chris Jones, Jacques Grill and colleagues report the identification of recurrent activating mutations in ACVR1 in diffuse intrinsic pontine gliomas. Diffuse intrinsic pontine gliomas (DIPGs) are highly infiltrative malignant glial neoplasms of the ventral pons that, due to their location within the brain, are unsuitable for surgical resection and consequently have a universally dismal clinical outcome. The median survival time is 9–12 months, with neither chemotherapeutic nor targeted agents showing substantial survival benefit in clinical trials in children with these tumors1. We report the identification of recurrent activating mutations in the ACVR1 gene, which encodes a type I activin receptor serine/threonine kinase, in 21% of DIPG samples. Strikingly, these somatic mutations (encoding p.Arg206His, p.Arg258Gly, p.Gly328Glu, p.Gly328Val, p.Gly328Trp and p.Gly356Asp substitutions) have not been reported previously in cancer but are identical to mutations found in the germ line of individuals with the congenital childhood developmental disorder fibrodysplasia ossificans progressiva (FOP)2 and have been shown to constitutively activate the BMP–TGF-β signaling pathway. These mutations represent new targets for therapeutic intervention in this otherwise incurable disease.
0
Citation464
0
Save
27

A new SARS-CoV-2 lineage that shares mutations with known Variants of Concern is rejected by automated sequence repository quality control

Bryan Thornlow et al.Apr 6, 2021
We report a SARS-CoV-2 lineage that shares N501Y, P681H, and other mutations with known variants of concern, such as B.1.1.7. This lineage, which we refer to as B.1.x (COG-UK sometimes references similar samples as B.1.324.1), is present in at least 20 states across the USA and in at least six countries. However, a large deletion causes the sequence to be automatically rejected from repositories, suggesting that the frequency of this new lineage is underestimated using public data. Recent dynamics based on 339 samples obtained in Santa Cruz County, CA, USA suggest that B.1.x may be increasing in frequency at a rate similar to that of B.1.1.7 in Southern California. At present the functional differences between this variant B.1.x and other circulating SARS-CoV-2 variants are unknown, and further studies on secondary attack rates, viral loads, immune evasion and/or disease severity are needed to determine if it poses a public health concern. Nonetheless, given what is known from well-studied circulating variants of concern, it seems unlikely that the lineage could pose larger concerns for human health than many already globally distributed lineages. Our work highlights a need for rapid turnaround time from sequence generation to submission and improved sequence quality control that removes submission bias. We identify promising paths toward this goal.
27
Citation6
0
Save
18

The Children’s Brain Tumor Network (CBTN) - Accelerating Research in Pediatric Central Nervous System Tumors through Collaboration and Open Science

Jena Lilly et al.Oct 18, 2022
Abstract Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children’s Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN’s 32 member institutions utilize a shared regulatory governance architecture at the Children’s Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4,700 subjects, over 1,500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1,000 tumors and germline material is currently available with data generation for > 5,000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors.
0

CNSC-58. BIOPROCESSING OF VIABLE SURGICAL PEDIATRIC BRAIN TUMOR SPECIMENS FOR GENOME-GUIDED PERSONALIZED DRUG TESTING

Emon Nasajpour et al.Nov 1, 2024
Abstract Novel treatment approaches are urgently needed for pediatric central nervous system (CNS) tumors as they are the leading cause of cancer-related deaths in children. A lack of research materials impedes progress towards developing such therapies. Although various brain cancer biobanks exist, these rarely store viable patient-derived tissue and cells for live cell analyses, including cell fate assays and testing for drug sensitivities. We propose that a biorepository of viable cell dissociates and tissue broadly representing CNS tumor entities overcomes these limitations. From a combination of molecular diagnoses and histopathologic assessment of over 120 samples collected, we generated a biorepository of roughly 35 distinct entities of pediatric CNS tumors in our Stanford neuro-bioprocessing cohort. Based on the Central Brain Tumor Registry of the United States, the proportion of subtypes represented in our cohort match that of the general population with exceptions. We established a standardized bioprocessing pipeline that can be used as a template for tissue collection and model development in the broader disease context and for multiple downstream applications. Our emphasis on cryostorage of viable cells and tissue facilitates ad hoc live cell analyses. In addition to gaining a better understanding of tumor pathophysiology, we attempted a rapid bed-to-bench-to-bedside approach using comparative RNA expression profile analyses in an individual patient’s pilocytic astrocytoma. Novel drug targets were identified by analyzing RNA transcripts that are highly expressed (outliers) compared with a compendium of 12,747 brain and non-brain tumor samples. We validated outliers as drug targets using acute cell isolates, and identified a novel target in recurrent low-grade glioma. These studies illustrate that biobanking of viable patient-derived material enables developing personalized therapies with the goal of improving patient outcomes. As demonstrated here, patient-derived acute cell isolates facilitate identifying drug vulnerability, creating an opportunity for more personalized treatment of patients with CNS tumors.
0

Distinct epigenetic shift in a subset of Glioma CpG island methylator phenotype (G-CIMP) during tumor recurrence

Camila Souza et al.Jun 28, 2017
Histomorphology and current grading schemes are unable to predict glioma relapse and malignant tumor progression. We reported that the IDH-mutant associated Glioma-CpG Island Methylator Phenotype (G-CIMP) can be further divided into two clinically distinct subtypes independent of histopathological grading (G-CIMP-high and -low) with evidence of correlation with tumor progression. Here we performed a comprehensive epigenomic analysis of 74 longitudinally collected glioma samples (grade II-IV) to understand malignant recurrence from G-CIMP-high to G-CIMP-low. G-CIMP-low recurrence appeared in 12% of all gliomas and resemble IDH-wildtype primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, stem cell-like epigenomic phenotype, and genomic instability. Finally, we defined a set of candidate biomarker signatures that predict recurrence of G-CIMP-low with clinically relevance on patient outcomes. Our study provides opportunity for refined clinical trial designs and therapeutic targets that limit progression to more aggressive G-CIMP-low phenotype.
Load More