PV
Petter Vikman
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2,456
h-index:
22
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables

Emma Ahlqvist et al.Mar 5, 2018

Summary

Background

 Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. 

Methods

 We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of β-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. 

Findings

 We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. 

Interpretation

 We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes. 

Funding

 Swedish Research Council, European Research Council, Vinnova, Academy of Finland, Novo Nordisk Foundation, Scania University Hospital, Sigrid Juselius Foundation, Innovative Medicines Initiative 2 Joint Undertaking, Vasa Hospital district, Jakobstadsnejden Heart Foundation, Folkhälsan Research Foundation, Ollqvist Foundation, and Swedish Foundation for Strategic Research.
0
Citation1,661
0
Save
0

Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism

João Fadista et al.Sep 8, 2014
Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.
0
Citation438
0
Save
0

Clustering of adult-onset diabetes into novel subgroups guides therapy and improves prediction of outcome

Emma Ahlqvist et al.Sep 8, 2017
Abstract Background Diabetes is presently classified into two main forms, type 1 (T1D) and type 2 diabetes (T2D), but especially T2D is highly heterogeneous. A refined classification could provide a powerful tool individualize treatment regimes and identify individuals with increased risk of complications already at diagnosis. Methods We applied data-driven cluster analysis (k-means and hierarchical clustering) in newly diagnosed diabetic patients (N=8,980) from the Swedish ANDIS (All New Diabetics in Scania) cohort, using five variables (GAD-antibodies, BMI, HbA1c, HOMA2-B and HOMA2-IR), and related to prospective data on development of complications and prescription of medication from patient records. Replication was performed in three independent cohorts: the Scania Diabetes Registry (SDR, N=1466), ANDIU (All New Diabetics in Uppsala, N=844) and DIREVA (Diabetes Registry Vaasa, N=3485). Cox regression and logistic regression was used to compare time to medication, time to reaching the treatment goal and risk of diabetic complications and genetic associations. Findings We identified 5 replicable clusters of diabetes patients, with significantly different patient characteristics and risk of diabetic complications. Particularly, individuals in the most insulin-resistant cluster 3 had significantly higher risk of diabetic kidney disease, but had been prescribed similar diabetes treatment compared to the less susceptible individuals in clusters 4 and 5. The insulin deficient cluster 2 had the highest risk of retinopathy. In support of the clustering, genetic associations to the clusters differed from those seen in traditional T2D. Interpretation We could stratify patients into five subgroups predicting disease progression and development of diabetic complications more precisely than the current classification. This new substratificationn may help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes. Funding The funders of the study had no role in study design, data collection, analysis, interpretation or writing of the report. Research in context Evidence before this study The current diabetes classification into T1D and T2D relies primarily on presence (T1D) or absence (T2D) of autoantibodies against pancreatic islet beta cell autoantigens and age at diagnosis (earlier for T1D). With this approach 75-85% of patients are classified as T2D. A third subgroup, Latent Autoimmune Diabetes in Adults (LADA,<10%), is defined by presence of autoantibodies against glutamate decarboxylase (GADA) with onset in adult age. In addition, several rare monogenic forms of diabetes have been described, including Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. This information is provided by national guidelines (ADA,WHO, IDF, Diabetes UK etc) but has not been much updated during the past 20 years and very few attempts have been made to explore heterogeneity of T2D. A topological analysis of potential T2D subgroups using electronic health records was published in 2015 but this information has not been implemented in the clinic. Added value of this study Here we applied a data-driven cluster analysis of 5 simple variables measured at diagnosis in 4 independent cohorts of newly-diagnosed diabetic patients (N=14755) and identified 5 replicable clusters of diabetes patients, with significantly different patient characteristics and risk of diabetic complications. Particularly, individuals in the most insulin-resistant cluster 3 had significantly higher risk of diabetic kidney disease. Implications of the available evidence This new sub-stratification may help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes
0
Citation12
0
Save