MS
Montgomery Slatkin
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
42
(57% Open Access)
Cited by:
36,092
h-index:
101
/
i10-index:
223
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Draft Sequence of the Neandertal Genome

Edward Green et al.May 6, 2010
+53
A
J
E
Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
0
Citation4,034
0
Save
0

Gene Flow and the Geographic Structure of Natural Populations

Montgomery SlatkinMay 15, 1987
M
There is abundant geographic variation in both morphology and gene frequency in most species. The extent of geographic variation results from a balance of forces tending to produce local genetic differentiation and forces tending to produce genetic homogeneity. Mutation, genetic drift due to finite population size, and natural selection favoring adaptations to local environmental conditions will all lead to the genetic differentiation of local populations, and the movement of gametes, individuals, and even entire populations—collectively called gene flow—will oppose that differentiation. Gene flow may either constrain evolution by preventing adaptation to local conditions or promote evolution by spreading new genes and combinations of genes throughout a species' range. Several methods are available for estimating the amount of gene flow. Direct methods monitor ongoing gene flow, and indirect methods use spatial distributions of gene frequencies to infer past gene flow. Applications of these methods show that species differ widely in the gene flow that they experience. Of particular interest are those species for which direct methods indicate little current gene flow but indirect methods indicate much higher levels of gene flow in the recent past. Such species probably have undergone large-scale demographic changes relatively frequently.
0
Citation3,793
0
Save
0

A measure of population subdivision based on microsatellite allele frequencies.

Montgomery SlatkinJan 1, 1995
M
A new measure of the extent of population subdivision as inferred from allele frequencies at microsatellite loci is proposed and tested with computer simulations. This measure, called R(ST), is analogous to Wright's F(ST) in representing the proportion of variation between populations. It differs in taking explicit account of the mutation process at microsatellite loci, for which a generalized stepwise mutation model appears appropriate. Simulations of subdivided populations were carried out to test the performance of R(ST) and F(ST). It was found that, under the generalized stepwise mutation model, R(ST) provides relatively unbiased estimates of migration rates and times of population divergence while F(ST) tends to show too much population similarity, particularly when migration rates are low or divergence times are long [corrected].
0
Citation3,695
0
Save
0

ISOLATION BY DISTANCE IN EQUILIBRIUM AND NON-EQUILIBRIUM POPULATIONS

Montgomery SlatkinFeb 1, 1993
M
It is shown that for allele frequency data a useful measure of the extent of gene flow between a pair of populations is , which is the estimated level of gene flow in an island model at equilibrium. For DNA sequence data, the same formula can be used if FST is replaced by NST. In a population with restricted dispersal, analytic theory shows that there is a simple relationship between M̂ and geographic distance in both equilibrium and non-equilibrium populations and that this relationship is approximately independent of mutation rate when the mutation rate is small. Simulation results show that with reasonable sample sizes, isolation by distance can indeed be detected and that, at least in some cases, non-equilibrium patterns can be distinguished. This approach to analyzing isolation by distance is used for two allozyme data sets, one from gulls and one from pocket gophers.
0
Citation2,356
0
Save
0

Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations.

Montgomery Slatkin et al.Oct 1, 1991
R
M
We consider the distribution of pairwise sequence differences of mitochondrial DNA or of other nonrecombining portions of the genome in a population that has been of constant size and in a population that has been growing in size exponentially for a long time. We show that, in a population of constant size, the sample distribution of pairwise differences will typically deviate substantially from the geometric distribution expected, because the history of coalescent events in a single sample of genes imposes a substantial correlation on pairwise differences. Consequently, a goodness-of-fit test of observed pairwise differences to the geometric distribution, which assumes that each pairwise comparison is independent, is not a valid test of the hypothesis that the genes were sampled from a panmictic population of constant size. In an exponentially growing population in which the product of the current population size and the growth rate is substantially larger than one, our analytical and simulation results show that most coalescent events occur relatively early and in a restricted range of times. Hence, the "gene tree" will be nearly a "star phylogeny" and the distribution of pairwise differences will be nearly a Poisson distribution. In that case, it is possible to estimate r, the population growth rate, if the mutation rate, mu, and current population size, N0, are assumed known. The estimate of r is the solution to ri/mu = ln(N0r) - gamma, where i is the average pairwise difference and gamma approximately 0.577 is Euler's constant.
0
Citation2,329
0
Save
0

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer et al.Dec 18, 2013
+43
N
F
K
We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans. A complete genome sequence is presented of a female Neanderthal from Siberia, providing information about interbreeding between close relatives and uncovering gene flow events among Neanderthals, Denisovans and early modern humans, as well as establishing substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans. Recent excavations in the Denisova Cave in the Altai Mountains of southern Siberia have yielded a wealth of hominin fossils from a site that has been occupied for perhaps 250,000 years or more. Now a high-quality genome sequence has been determined from a circa 50,000-year-old toe bone — a proximal toe phalanx — excavated from the east gallery of Denisova Cave in 2010. The sequence is that of a Neanderthal woman whose parents were closely related — perhaps half-siblings or uncle and niece. Such inbreeding was also common among her recent ancestors. Comparisons with other archaic and present-day human genomes reveal several gene-flow events among Neanderthals, the closely related Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. The high-quality Neanderthal genome also helps to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.
0
Citation2,092
0
Save
0

A High-Coverage Genome Sequence from an Archaic Denisovan Individual

Matthias Meyer et al.Sep 1, 2012
+31
M
M
M
Ancient Genomics The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222 , published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage.
0
Citation1,888
0
Save
0

Genetic history of an archaic hominin group from Denisova Cave in Siberia

David Reich et al.Dec 1, 2010
+26
M
S
D
Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans. Anatomically modern humans were in Africa from some point after 200,000 years ago and reached Eurasia rather later. Meanwhile, archaic hominins — including the Neanderthals — had been in Eurasia from at least 230,000 years ago and disappear from the fossil record only about 30,000 years ago. The genome of a female archaic hominin from Denisova Cave in southern Siberia has now been sequenced from DNA extracted from a finger bone. The group to which this 'Denisovan' individual belonged shares a common origin with Neanderthals and, although it was not involved in the putative gene flow from Neanderthals into Eurasians, it contributed 4–6% of the genomes of present-day Melanesians. In addition, the morphology of a tooth with a mitochondrial genome very similar to that of the finger bone suggests that these hominins are evolutionarily distinct from both Neanderthals and modern humans. Using DNA from a finger bone, the genome of an archaic hominin from southern Siberia has been sequenced to about 1.9-fold coverage. The group to which this individual belonged shares a common origin with Neanderthals, and although it was not involved in the putative gene flow from Neanderthals into Eurasians, it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. A tooth whose mitochondrial genome is very similar to that of the finger bone further suggests that these hominins are evolutionarily distinct from Neanderthals and modern humans.
0
Citation1,803
0
Save
0

A COMPARISON OF THREE INDIRECT METHODS FOR ESTIMATING AVERAGE LEVELS OF GENE FLOW

Montgomery Slatkin et al.Nov 1, 1989
N
M
Three methods for estimating the average level of gene flow in natural population are discussed and compared. The three methods are FST , rare alleles, and maximum likelihood. All three methods yield estimates of the combination of parameters (the number of migrants [Nm] in a demic model or the neighborhood size [4πDσ2 ] in a continuum model) that determines the relative importance of gene flow and genetic drift. We review the theory underlying these methods and derive new analytic results for the expectation of FST in stepping-stone and continuum models when small sets of samples are taken. We also compare the effectiveness of the different methods using a variety of simulated data. We found that the FST and rare-alleles methods yield comparable estimates under a wide variety of conditions when the population being sampled is demographically stable. They are roughly equally sensitive to selection and to variation in population structure, and they approach their equilibrium values at approximately the same rate. We found that two different maximum-likelihood methods tend to yield biased estimates when relatively small numbers of locations are sampled but more accurate estimates when larger numbers are sampled. Our conclusion is that, although FST and rare-alleles methods are expected to be equally effective in analyzing ideal data, practical problems in estimating the frequencies of rare alleles in electrophoretic studies suggest that FST is likely to be more useful under realistic conditions.
0
Citation1,311
0
Save
0

Testing for Ancient Admixture between Closely Related Populations

Éric Durand et al.Feb 15, 2011
M
D
N
É
One enduring question in evolutionary biology is the extent of archaic admixture in the genomes of present-day populations. In this paper, we present a test for ancient admixture that exploits the asymmetry in the frequencies of the two nonconcordant gene trees in a three-population tree. This test was first applied to detect interbreeding between Neandertals and modern humans. We derive the analytic expectation of a test statistic, called the D statistic, which is sensitive to asymmetry under alternative demographic scenarios. We show that the D statistic is insensitive to some demographic assumptions such as ancestral population sizes and requires only the assumption that the ancestral populations were randomly mating. An important aspect of D statistics is that they can be used to detect archaic admixture even when no archaic sample is available. We explore the effect of sequencing error on the false-positive rate of the test for admixture, and we show how to estimate the proportion of archaic ancestry in the genomes of present-day populations. We also investigate a model of subdivision in ancestral populations that can result in D statistics that indicate recent admixture.
0
Citation1,175
0
Save
Load More