AJ
Antonio Julià
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
3,080
h-index:
47
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

Hunna Watson et al.Jul 15, 2019
Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9–4% of women and 0.3% of men2–4, with twin-based heritability estimates of 50–60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes. Genome-wide analyses identify eight independent loci associated with anorexia nervosa. Genetic correlations implicate both psychiatric and metabolic components in the etiology of this disorder, even after adjusting for the effects of common variants associated with body mass index.
0
Citation766
0
Save
0

Genetic Structure of Europeans: A View from the North–East

Mari Nelis et al.May 7, 2009
Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (λ) (ranging from 1.00 to 4.21), fixation index (Fst) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).
0
Citation383
0
Save
0

scDrugPrio: A framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases

Samuel Schäfer et al.Jan 1, 2023
Background: Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. Methods: Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. Results: scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn9s disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn9s disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. Conclusion: We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio9s potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package (https://github.com/SDTC-CPMed/scDrugPrio).
0

Shared Genetic Risk between Eating Disorder- and Substance-Use-Related Phenotypes: Evidence from Genome-Wide Association Studies

Melissa Munn‐Chernoff et al.Aug 23, 2019
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa (BN) and problem alcohol use (genetic correlation [rg], twin-based=0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge-eating, AN without binge-eating, and a BN factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder (MDD). Total sample sizes per phenotype ranged from ~2,400 to ~537,000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg=0.18; false discovery rate q=0.0006), cannabis initiation and AN (rg=0.23; q<0.0001), and cannabis initiation and AN with binge-eating (rg=0.27; q=0.0016). Conversely, significant negative genetic correlations were observed between three non-diagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge-eating (rgs=-0.19 to -0.23; qs<0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for MDD loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships between these behaviors.
0

Interpretable Inflammation Landscape of Circulating Immune cells

Laura Jiménez-Gracia et al.Jan 1, 2023
Inflammation is a biological phenomenon involved in a wide variety of physiological and pathological processes. Although a controlled inflammatory response is beneficial for restoring homeostasis, it can become unfavorable if dysregulated. In recent years, major progress has been made in characterizing acute and chronic inflammation in specific diseases. However, a global, holistic understanding of inflammation is still elusive. This is particularly intriguing, considering the crucial function of inflammation for human health and its potential for modern medicine if fully deciphered. Here, we leverage advances in the field of single-cell genomics to delineate the full spectrum of circulating immune cell activation underlying inflammatory processes during infection, immune-mediated inflammatory diseases and cancer. Our single-cell atlas of >2 million peripheral blood mononuclear cells from 356 patients and 18 diseases allowed us to learn a foundation model of inflammation in circulating immune cells. The atlas expanded our current knowledge of the biology of inflammation of acute (e.g. inflammatory bowel disease, sepsis) and chronic (e.g. cirrhosis, asthma, and chronic obstructive pulmonary disease) disease processes and laid the foundation to develop a precision medicine framework using unsupervised as well as explainable machine learning. Beyond a disease-centered classification, we charted altered activity of inflammatory molecules in peripheral blood cells, depicting functional biomarkers to further understand mechanisms of inflammation. Finally, we have laid the groundwork for developing precision medicine diagnostic tools for patients experiencing severe acute or chronic inflammation by learning a classifier for inflammatory diseases, presenting cells in circulation as a powerful resource for patient stratification.
0

Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes

Douglas Ruderfer et al.Aug 8, 2017
Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a significant proportion of common risk variation. Understanding the genetic factors underlying the specific symptoms of these disorders will be crucial for improving diagnosis, intervention and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all cases to controls, of which 41 represented novel findings. Two genome-wide significant loci were identified when comparing SCZ to BD and a third was found when directly incorporating functional information. Regional joint association identified a genomic region of overlapping association in BD and SCZ with disease-independent causal variants indicating a fourth region contributing to differences between these disorders. Regional SNP-heritability analyses demonstrated that the estimated heritability of BD based on the SCZ GWS regions was significantly higher than that based on the average genomic region (91 regions, p = 1.2x10-6) while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we calculated polygenic risk scores and identified several significant correlations with: 1) SCZ subphenotypes: negative symptoms (SCZ, p=3.6x10-6) and manic symptoms (BD, p=2x10-5), 2) BD subphenotypes: psychotic features (SCZ p=1.2x10-10, BD p=5.3x10-5) and age of onset (SCZ p=7.9x10-4). Finally, we show that psychotic features in BD has significant SNP-heritability (h2snp=0.15, SE=0.06), and a significant genetic correlation with SCZ (rg=0.34) in addition there is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand the biology contributing to clinical differences of these disorders. Our results provide the best evidence so far of genomic components distinguishing between BD and SCZ that contribute directly to specific symptom dimensions.
0

Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation

Laura Huckins et al.Feb 14, 2018
Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals. Despite having the highest mortality rate of any psychiatric disorder, little is known about the aetiology of AN, and few effective treatments exist. Global efforts to collect large sample sizes of individuals with AN have been highly successful, and a recent study consequently identified the first genome-wide significant locus involved in AN. This result, coupled with other recent studies and epidemiological evidence, suggest that previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, both neurological and metabolic pathways may also be involved. In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation (TI) methods approaches use machine-learning methods to impute tissue-specific gene expression from large genotype data using curated eQTL reference panels. These offer an exciting opportunity to compare gene associations across neurological and metabolic tissues. Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement (adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach). We identified 35 significant gene-tissue associations within the large chromosome 12 region described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and FINEMAP to associations within this locus to identify putatively causal signals. We identified four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10-07), and CUL3, in the caudate basal ganglia (p=1.8x10-06). These genes are significantly enriched for associations with anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic and psychiatric factors.