CJ
Cheulhee Jung
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
346
h-index:
24
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A stochastic DNA walker that traverses a microparticle surface

Cheulhee Jung et al.Nov 2, 2015
A
P
C
A DNA walker driven by hybridization reactions can traverse the surface of a DNA-coated microparticle, taking more than 30 continuous steps. Molecular machines have previously been designed that are propelled by DNAzymes1,2,3, protein enzymes4,5,6 and strand displacement7,8,9. These engineered machines typically move along precisely defined one- and two-dimensional tracks. Here, we report a DNA walker that uses hybridization to drive walking on DNA-coated microparticle surfaces. Through purely DNA:DNA hybridization reactions, the nanoscale movements of the walker can lead to the generation of a single-stranded product and the subsequent immobilization of fluorescent labels on the microparticle surface. This suggests that the system could be of use in analytical and diagnostic applications, similar to how strand exchange reactions in solution have been used for transducing and quantifying signals from isothermal molecular amplification assays10,11. The walking behaviour is robust and the walker can take more than 30 continuous steps. The traversal of an unprogrammed, inhomogeneous surface is also due entirely to autonomous decisions made by the walker, behaviour analogous to amorphous chemical reaction network computations12,13, which have been shown to lead to pattern formation14,15,16,17.
0
Paper
Citation345
0
Save
1

Massively Parallel Selection of NanoCluster Beacons

Yu‐An Kuo et al.Dec 5, 2021
+15
Y
C
Y
NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed the polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here we report a high-throughput selection method that takes advantage of repurposed next-generation-sequencing (NGS) chips to screen the activation fluorescence of ∼40,000 activator sequences. We find the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow and red POTs, respectively. Based on these findings, we propose a “zipper bag model” that explains how these hotspots lead to the creation of distinct silver cluster chromophores and contribute to the difference in chromophore chemical yields. Combining high-throughput screening with machine learning algorithms, we establish a pipeline to rationally design bright and multicolor NCBs.
1
Citation1
0
Save
0

Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation

You-Jeong Kim et al.Sep 16, 2024
+2
J
D
Y
Clustered regularly interspaced short palindromic repeats (CRISPR)-based editing tools have transformed the landscape of genome editing. However, the absence of a robust and safe CRISPR delivery method continues to limit its potential for therapeutic applications. Despite the emergence of various methodologies aimed at addressing this challenge, issues regarding efficiency and editing operations persist. We introduce a microfluidic gene delivery system, called droplet cell pincher (DCP), designed for highly efficient and safe genome editing. This approach combines droplet microfluidics with cell mechanoporation, enabling encapsulation and controlled passage of cells and CRISPR systems through a microscale constriction. Discontinuities created in cell and nuclear membranes upon passage facilitate the rapid CRISPR-system internalization into the nucleus. We demonstrate the successful delivery of various macromolecules, including mRNAs (~98%) and plasmid DNAs (~91%), using this platform, underscoring the versatility of the DCP and leveraging it to achieve successful genome engineering through CRISPR-Cas9 delivery. Our platform outperforms electroporation, the current state-of-the-art method, in three key areas: single knockouts (~6.5-fold), double knockouts (~3.8-fold), and knock-ins (~3.8-fold). These results highlight the potential of our platform as a next-generation tool for CRISPR engineering, with implications for clinical and biological cell-based research.
0

Supercharging enables organized assembly of synthetic biomolecules

Anna Simon et al.May 16, 2018
+10
J
V
A
There are few methods for the assembly of defined protein oligomers and higher order structures that could serve as novel biomaterials. Using fluorescent proteins as a model system, we have engineered novel oligomerization states by combining oppositely supercharged variants. A well-defined, highly symmetrical 16- mer (two stacked, circular octamers) can be formed from alternating charged proteins; higher order structures then form in a hierarchical fashion from this discrete protomer. During SUpercharged PRotein Assembly (SuPrA), electrostatic attraction between oppositely charged variants drives interaction, while shape and patchy physicochemical interactions lead to spatial organization along specific interfaces, ultimately resulting in protein assemblies never before seen in nature.
0

Sulfur incorporation into nucleic acids accelerates enzymatic activity

Hyun Shin et al.May 25, 2024
C
B
J
H
DNAzymes play a crucial role in biosensors for signal detection, but specific structures are required for diagnostic applications, complicating their design. This study reports a novel approach to the development of DNAzymes by incorporating sulfur atoms into nucleic acids via phosphorothioate (PS) bonds. Unlike traditional DNAzymes that rely on specific structures such as G-quadruplexes, this approach leads to high enzymatic activity without structural constraints. Computational analysis reveals that the change in the electron density of the nucleobases due to PS modification enhances interactions within the DNAzyme-H2O2-hemin complex, accelerating the rate-determining step and improving enzymatic activity. Systematic guidelines for the development of non-sequence constrained DNAzymes are provided by investigating the effect of the number of PS modifications, the length of the DNA, and various nucleobase combinations. α-thio-dNTP, a monomer containing PS, exhibits no observable enzymatic activity, but enzymatic activity is recorded for single-stranded DNA (ssDNA) containing PS. However, when the ssDNA is transformed into double-stranded DNA (dsDNA), the bases that react with hemin are blocked by hydrogen bonding, reducing enzymatic activity. An enzymogenic signaling system that differentiates between ssDNA and dsDNA is subsequently developed for sequence-specific colorimetric detection, demonstrating significant promise for overcoming the limitations of conventional DNAzymes in molecular diagnosis.
0

Massively parallel kinetic profiling of natural and engineered CRISPR nucleases

Stephen Jones et al.Jul 9, 2019
+8
J
W
S
Engineered Streptococcus pyogenes (Sp) Cas9s and Acidaminococcus sp. (As) Cas12a (formerly Cpf1) improve cleavage specificity in human cells. However, the fidelity, enzymatic mechanisms, and cleavage products of emerging CRISPR nucleases have not been profiled systematically across partially mispaired off-target DNA sequences. Here, we describe NucleaSeq - nuclease digestion and deep sequencing - a massively parallel platform that measures cleavage kinetics and captures the time-resolved identities of cleaved products for more than ten thousand DNA targets that include mismatches, insertions, and deletions relative to the guide RNA. The binding specificity of each enzyme is measured on the same DNA library via the chip-hybridized association mapping platform (CHAMP). Using this integrated cleavage and binding platform, we profile four SpCas9 variants and AsCas12a. Engineered Cas9s retain wtCas9-like off-target binding but increase cleavage specificity; Cas9-HF1 shows the most dramatic increase in cleavage specificity. Surprisingly, wtCas12a - reported as a more specific nuclease in cells - has cleavage specificity similar to wtCas9 in vitro. Initial cleavage position and subsequent end-trimming vary across nucleases, guide RNA sequences, and position and base identity of mispairs in target DNAs. Using these large datasets, we develop a biophysical model that reveals mechanistic insights into off-target cleavage activities by these nucleases. More broadly, NucleaSeq enables rapid, quantitative, and systematic comparison of the specificities and cleavage products of engineered and natural nucleases.
9

Expansion of the prime editing modality with Cas9 from Francisella novicida

Yeounsun Oh et al.May 25, 2021
+11
H
W
Y
Prime editing can induce a desired base substitution, insertion, or deletion in a target gene using reverse transcriptase (RT) after nick formation by CRISPR nickase. In this study, we developed a technology that can be used to insert or replace external bases in the target DNA sequence by linking reverse transcriptase to the Francisella novicida Cas 9 [FnCas9(H969A)] nickase module, which is a CRISPR-Cas9 ortholog. Using FnCas9(H969A) nickase, the targeting limitation of existing Streptococcus pyogenes Cas9 nickase [SpCas9(H840A)]-based prime editing was dramatically extended, and accurate prime editing was induced specifically for the target genes.