ES
Elwira Smakowska-Luzan
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
828
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An extracellular network of Arabidopsis leucine-rich repeat receptor kinases

Elwira Smakowska-Luzan et al.Jan 10, 2018
A high-throughput assay is used to analyse 40,000 potential extracellular domain interactions of a large family of plant cell surface receptors (LRR-RKs) and provide a cell surface interaction network for these receptors. Cell surface receptors mediate communication between the interior of a cell and its external environment. Specifically, the extracellular domains (ECDs) of such receptors interact with external molecules. It is less clear how interactions between ECDs of different receptors help to form receptor complexes for signal transduction. Youssef Belkhadir and colleagues investigate systems-level organization of leucine-rich repeat receptor kinases (LRR-RKs)—a large family of plant cell surface receptors with roles in processes including plant defence and development. The authors use a high-throughput assay to study 40,000 potential ECD interactions. They develop a cell surface interaction network for these receptors and study its dynamics. The team demonstrate the power of this network for detecting biologically relevant interactions by predicting and validating the function of previously uncharacterized LRR-RKs in plant growth and immunity. The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation1,2. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability3,4. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions5. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs)5, which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance6,7,8,9. Although the principles that govern LRR-RK signalling activation are emerging1,10, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay3, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.
0

A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms

Sergio Galindo‐Trigo et al.Jul 1, 2024
Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1Sawicki M. Aït Barka E. Clément C. Vaillant-Gaveau N. Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission.J. Exp. Bot. 2015; 66: 1707-1719https://doi.org/10.1093/jxb/eru533Crossref Scopus (109) Google Scholar Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2Funatsuki H. Suzuki M. Hirose A. Inaba H. Yamada T. Hajika M. Komatsu K. Katayama T. Sayama T. Ishimoto M. Fujino K. Molecular basis of a shattering resistance boosting global dissemination of soybean.Proc. Natl. Acad. Sci. USA. 2014; 111: 17797-17802https://doi.org/10.1073/pnas.1417282111Crossref PubMed Scopus (150) Google Scholar,3Arseneault M.H. Cline J.A. A review of apple preharvest fruit drop and practices for horticultural management.Sci. Hortic. 2016; 211: 40-52https://doi.org/10.1016/j.scienta.2016.08.002Crossref Scopus (50) Google Scholar,4Reichardt S. Piepho H.P. Stintzi A. Schaller A. Peptide signaling for drought-induced tomato flower drop.Science. 2020; 367: 1482-1485https://doi.org/10.1126/science.aaz5641Crossref PubMed Scopus (93) Google Scholar,5Goto K. Yabuta S. Tamaru S. Ssenyonga P. Emanuel B. Katsuhama N. Sakagami J.-I. Root hypoxia causes oxidative damage on photosynthetic apparatus and interacts with light stress to trigger abscission of lower position leaves in Capsicum.Sci. Hortic. 2022; 305111337https://doi.org/10.1016/j.scienta.2022.111337Crossref Scopus (4) Google Scholar Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6Jinn T.L. Stone J.M. Walker J.C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission.Genes Dev. 2000; 14: 108-117https://doi.org/10.1101/gad.14.1.108Crossref PubMed Google Scholar,7Stenvik G.-E. Tandstad N.M. Guo Y. Shi C.-L. Kristiansen W. Holmgren A. Clark S.E. Aalen R.B. Butenko M.A. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2.Plant Cell. 2008; 20: 1805-1817https://doi.org/10.1105/tpc.108.059139Crossref PubMed Scopus (236) Google Scholar,8Santiago J. Brandt B. Wildhagen M. Hohmann U. Hothorn L.A. Butenko M.A. Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission.eLife. 2016; 5e15075https://doi.org/10.7554/eLife.15075Crossref Scopus (165) Google Scholar,9Butenko M.A. Patterson S.E. Grini P.E. Stenvik G.E. Amundsen S.S. Mandal A. Aalen R.B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants.Plant Cell. 2003; 15: 2296-2307https://doi.org/10.1105/tpc.014365Crossref PubMed Scopus (291) Google Scholar These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10Wang Y. Wu Y. Zhang H. Wang P. Xia Y. Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity.Plant Physiol. 2022; 190: 206-210https://doi.org/10.1093/plphys/kiac270Crossref PubMed Scopus (12) Google Scholar,11Cho S.K. Larue C.T. Chevalier D. Wang H. Jinn T.-L. Zhang S. Walker J.C. Regulation of floral organ abscission in Arabidopsis thaliana.Proc. Natl. Acad. Sci. USA. 2008; 105: 15629-15634https://doi.org/10.1073/pnas.0805539105Crossref PubMed Scopus (264) Google Scholar,12Zhu Q. Shao Y. Ge S. Zhang M. Zhang T. Hu X. Liu Y. Walker J. Zhang S. Xu J. A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence.Nat. Plants. 2019; 5: 414-423https://doi.org/10.1038/s41477-019-0396-xCrossref PubMed Scopus (81) Google Scholar Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10Wang Y. Wu Y. Zhang H. Wang P. Xia Y. Arabidopsis MAPKK kinases YODA, MAPKKK3, and MAPKKK5 are functionally redundant in development and immunity.Plant Physiol. 2022; 190: 206-210https://doi.org/10.1093/plphys/kiac270Crossref PubMed Scopus (12) Google Scholar,13Neu A. Eilbert E. Asseck L.Y. Slane D. Henschen A. Wang K. Bürgel P. Hildebrandt M. Musielak T.J. Kolb M. et al.Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana.Proc. Natl. Acad. Sci. USA. 2019; 116: 5795-5804https://doi.org/10.1073/pnas.1815866116Crossref PubMed Scopus (35) Google Scholar,14Wang K. Chen H. Ortega-Perez M. Miao Y. Ma Y. Henschen A. Lohmann J.U. Laubinger S. Bayer M. Independent parental contributions initiate zygote polarization in Arabidopsis thaliana.Curr. Biol. 2021; 31: 4810-4816.e5https://doi.org/10.1016/j.cub.2021.08.033Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar,15Liu Y. Leary E. Saffaf O. Frank Baker R. Zhang S. Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development.J. Integr. Plant Biol. 2022; 64: 1531-1542https://doi.org/10.1111/jipb.13309Crossref PubMed Scopus (17) Google Scholar,16Sopeña-Torres S. Jordá L. Sánchez-Rodríguez C. Miedes E. Escudero V. Swami S. López G. Piślewska-Bednarek M. Lassowskat I. Lee J. et al.YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.New Phytol. 2018; 218: 661-680https://doi.org/10.1111/nph.15007Crossref PubMed Scopus (38) Google Scholar How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.
0
Citation1
0
Save