MF
Michael Fanselow
Author with expertise in Neural Mechanisms of Memory Formation and Spatial Navigation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
31
(65% Open Access)
Cited by:
15,678
h-index:
99
/
i10-index:
274
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neural organization of the defensive behavior system responsible for fear

Michael FanselowDec 1, 1994
This paper applies the behavior systems approach to fear and defensive behavior, examining the neural circuitry controlling fear and defensive behavior from this vantage point. The defensive behavior system is viewed as having three modes that are activated by different levels of fear. Low levels of fear promote pre-encounter defenses, such as meal-pattern reorganization. Moderate levels of fear activate post-encounter defenses. For the rat, freezing is the dominant post-encounter defensive response. Since this mode of defense is activated by learned fear, forebrain structures such as the amygdala play a critical role in its organization. Projections from the amygdala to the ventral periaqueductal gray activate freezing. Extremely high levels of fear, such as those provoked by physical contact, elicit the vigorous active defenses that compose the circa-strike mode. Midbrain structures such as the dorsolateral periaqueductal gray and the superior colliculus play a crucial role in organizing this mode of defense. Inhibitory interactions between the structures mediating circa-strike and post-encounter defense allow for the rapid switching between defensive modes as the threatening situation varies.
0

A perceptual-defensive-recuperative model of fear and pain

Robert Bolles et al.Jun 1, 1980
Abstract A model of fear and pain is presented in which the two are assumed to activate totally different classes of behavior. Fear, produced by stimuli that are associated with painful events, results in defensive behavior and the inhibition of pain and pain-related behaviors. On the other hand, pain, produced by injurious stimulation, motivates recuperative behaviors that promote healing. In this model injurious stimulation, on the one hand, and the expectation of injurious stimulation, on the other hand, activate entirely different motivational systems which serve entirely different functions. The fear motivation system activates defensive behavior, such as freezing and flight from a frightening situation, and its function is to defend the animal against natural dangers, such as predation. A further effect of fear motivation is to organize the perception of environmental events so as to facilitate the perception of danger and safety. The pain motivation system activates recuperative behaviors, including resting and body-care responses, and its function is to promote the animal's recovery from injury. Pain motivation also selectively facilitates the perception of nociceptive stimulation. Since the two kinds of motivation serve different and competitive functions, it might be expected that they would interact through some kind of mutual inhibition. Recent research is described which indicates that this is the case. The most important connection is the inhibition of pain by fear; fear has the top priority. This inhibition appears to be mediated by an endogenous analgesic mechanism involving the endorphins. The model assumes that fear triggers the endorphin mechanism, thereby inhibiting pain motivation and recuperative behaviors that might compete with effective defensive behavior.
0
Citation806
0
Save
0

Genetic dissection of an amygdala microcircuit that gates conditioned fear

Wulf Haubensak et al.Nov 1, 2010
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ− neurons in CEl. Electrical silencing of PKC-δ+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEloff units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing. The central amygdala, composed mainly of GABAergic inhibitory neurons, is the part of the brain that processes Pavlovian conditioned fear. Two groups reporting in this issue of Nature use different yet complementary experimental approaches to arrive at similar conclusions about the functional architecture that underlies the conditioned fear response. They find that two microcircuits are involved, one required for fear acquisition and the other for conditioned fear responses. Haubensak et al. use genetically based functional manipulations to identify a subpopulation of GABAergic neurons that has a key role in gating learned fear. Ciocchi et al. use a combination of in vivo electrophysiological, optogenetic and pharmacological approaches in mice to identify three functionally distinct types of neurons that are embedded in a highly organized local disinhibitory network. The central amygdala relies on inhibitory circuitry to encode fear memories, but how this information is acquired and expressed in these connections is unknown. Two new papers use a combination of cutting-edge technologies to reveal two distinct microcircuits within the central amygdala, one required for fear acquisition and the other critical for conditioned fear responses. Understanding this architecture provides a strong link between activity in a specific circuit and particular behavioural consequences.
0

Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats

Stephen Maren et al.Nov 1, 1997
Electrolytic lesions of the dorsal hippocampus (DH) produce deficits in both the acquisition and expression of conditional fear to contextual stimuli in rats. To assess whether damage to DH neurons is responsible for these deficits, we performed three experiments to examine the effects of neurotoxic N-methyl-d-aspartate (NMDA) lesions of the DH on the acquisition and expression of fear conditioning. Fear conditioning consisted of the delivery of signaled or unsignaled footshocks in a novel conditioning chamber and freezing served as the measure of conditional fear. In Experiment 1, posttraining DH lesions produced severe retrograde deficits in context fear when made either 1 or 28, but not 100, days following training. Pretraining DH lesions made 1 week before training did not affect contextual fear conditioning. Tone fear was impaired by DH lesions at all training-to-lesion intervals. In Experiment 2, posttraining (1 day), but not pretraining (1 week), DH lesions produced substantial deficits in context fear using an unsignaled shock procedure. In Experiment 3, pretraining electrolytic DH lesions produced modest deficits in context fear using the same signaled and unsignaled shock procedures used in Experiments 1 and 2, respectively. Electrolytic, but not neurotoxic, lesions also increased pre-shock locomotor activity. Collectively, this pattern of results reveals that neurons in the DH are not required for the acquisition of context fear, but have a critical and time-limited role in the expression of context fear. The normal acquisition and expression of context fear in rats with neurotoxic DH lesions made before training may be mediated by conditioning to unimodal cues in the context, a process that may rely less on the hippocampal memory system.
0

Role of interleukin‐1β in postoperative cognitive dysfunction

Mario Cibelli et al.Aug 31, 2010
Abstract Objective: Although postoperative cognitive dysfunction (POCD) often complicates recovery from major surgery, the pathogenic mechanisms remain unknown. We explored whether systemic inflammation, in response to surgical trauma, triggers hippocampal inflammation and subsequent memory impairment, in a mouse model of orthopedic surgery. Methods: C57BL/6J, knock out (lacking interleukin [IL]‐1 receptor, IL‐1R −/− ) and wild type mice underwent surgery of the tibia under general anesthesia. Separate cohorts of animals were tested for memory function with fear conditioning tests, or euthanized at different times to assess levels of systemic and hippocampal cytokines and microglial activation; the effects of interventions, designed to interrupt inflammation (specifically and nonspecifically), were also assessed. Results: Surgery caused hippocampal‐dependent memory impairment that was associated with increased plasma cytokines, as well as reactive microgliosis and IL‐1β transcription and expression in the hippocampus. Nonspecific attenuation of innate immunity with minocycline prevented surgery‐induced changes. Functional inhibition of IL‐1β, both in mice pretreated with IL‐1 receptor antagonist and in IL‐1R −/− mice, mitigated the neuroinflammatory effects of surgery and memory dysfunction. Interpretation: A peripheral surgery‐induced innate immune response triggers an IL‐1β‐mediated inflammatory process in the hippocampus that underlies memory impairment. This may represent a viable target to interrupt the pathogenesis of postoperative cognitive dysfunction. ANN NEUROL 2010;68:360–368
0
Citation654
0
Save
Load More