CC
Camille Clérissi
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
447
h-index:
15
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes

Pascal Hingamp et al.Apr 11, 2013
Abstract Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
0
Citation210
0
Save
4

A core of functional complementary bacteria infects oysters in Pacific Oyster Mortality Syndrome

Camille Clérissi et al.Nov 16, 2020
ABSTRACT Background The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 μVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 μVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host’s resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. Lack of metabolic competition might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.
4
Paper
Citation6
0
Save
0

Microbiota composition and evenness predict survival rate of oysters confronted to Pacific Oyster Mortality Syndrome

Camille Clérissi et al.Jul 26, 2018
Abstract Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and caused important economic losses. Disease dynamics was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 µVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to oyster protection to POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favour of POMS. After five days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that five days of transplantation was long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oyster families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.
0
Paper
Citation4
0
Save
0

Negative parental and offspring environmental effects of macroalgae on coral recruitment are linked with alterations in the coral larval microbiome

Chloé Pozas-Schacre et al.Jul 1, 2024
The persistence of reef-building corals is threatened by macroalgal competitors leading to a major demographic bottleneck in coral recruitment. Whether parental effects exist under coral–algal competition and whether they influence offspring performance via microbiome alterations represent major gaps in our understanding of the mechanisms by which macroalgae may hinder coral recovery. We investigated the diversity, variability and composition of the microbiome of adults and larvae of the coral Pocillopora acuta and surrounding benthic substrate on algal-removed and algal-dominated bommies. We then assessed the relative influence of parental and offspring environmental effects on coral recruitment processes by reciprocally exposing coral larvae from two parental origins (algal-removed and algal-dominated bommies) to algal-removed and algal-dominated environmental conditions. Dense macroalgal assemblages impacted the microbiome composition of coral larvae. Larvae produced by parents from algal-dominated bommies were depleted in putative beneficial bacteria and enriched in opportunistic taxa. These larvae had a significantly lower survival compared to larvae from algal-removed bommies regardless of environmental conditions. In contrast, algal-induced parental and offspring environmental effects interacted to reduce the survival of coral recruits. Together our results demonstrate negative algal-induced parental and offspring environmental effects on coral recruitment that could be mediated by alterations in the offspring microbiome.
0
Citation1
0
Save
0

Invasive macroalgae shape chemical and microbial waterscapes on coral reefs

Chloé Pozas-Schacre et al.Jan 6, 2025
Over the past decades, human impacts have changed the structure of tropical benthic reef communities towards coral depletion and macroalgal proliferation. However, how these changes have modified chemical and microbial waterscapes is poorly known. Here, we assessed how the experimental removal of macroalgal assemblages influences the chemical and microbial composition of two reef boundary layers, the benthic and the momentum. Chemical and microbial waterscapes were spatially structured, both horizontally and vertically, according to macroalgal dominance and boundary layers. Microbes associated with reef degradation were enriched in the boundary layers surrounding macroalgal-dominated substrata. Dominant macroalgae were surrounded by a distinct chemical pool of diverse lipid classes (e.g., diterpenoids and glycerolipids) and labile organic matter (e.g., organooxygen compounds), which diffused from algal tissues to boundary layers according to their polarity. Finally, our results highlighted strong co-variations between specific algal-derived metabolites and planktonic microbes, giving insight into their roles in coral reef functioning and resilience. A field study demonstrates that macroalgae generate complex chemical and microbial waterscapes, which could play essential roles in the function and resilience of coral reefs