MG
Murray Grossman
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
72
/
i10-index:
227
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Joint ex vivo MRI and histology detect iron-rich cortical gliosis in Tau and TDP-43 proteinopathies

M. Tisdall et al.Apr 14, 2021
+14
R
D
M
ABSTRACT Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer’s disease (AD). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7T and histopathology to the study autopsy-confirmed FTLD-Tau (n=3) and FTLD-TDP (n=2), relative to an AD disease-control brain with antemortem clinical symptoms of frontotemporal dementia and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from HC and AD brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
0
Citation1
0
Save
24

3D Mapping of Neurofibrillary Tangle Burden in the Human Medial Temporal Lobe

Paul Yushkevich et al.Jan 17, 2021
+41
M
M
P
Abstract Tau protein neurofibrillary tangles (NFT) are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease (AD) and related dementias. Our knowledge of the pattern of NFT progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in AD, is based on conventional 2D histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe (MTL) specimens were used to construct 3D quantitative maps of NFT burden in the MTL at individual and group levels. These maps reveal significant variation in NFT burden along the anterior-posterior axis. While early NFT pathology is thought to be confined to the transentorhinal region, we find similar levels of NFT burden in this region and other MTL subregions, including amygdala, temporopolar cortex, and subiculum/CA1.
0

Immune-related genetic enrichment in frontotemporal dementia

Iris Broce et al.Jun 30, 2017
+185
G
Y
I
Background: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Methods and findings: Using large genome-wide association studies (GWAS) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with 'FTD-related disorders' namely FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS) - and one or more immune-mediated diseases including Crohn's disease (CD), ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis (PSOR). We found up to 270-fold genetic enrichment between FTD and RA and comparable enrichment between FTD and UC, T1D, and CeD. In contrast, we found only modest genetic enrichment between any of the immune-mediated diseases and CBD, PSP or ALS. At a conjunction false discovery rate (FDR) < 0.05, we identified numerous FTD-immune pleiotropic SNPs within the human leukocyte antigen (HLA) region on chromosome 6. By leveraging the immune diseases, we also found novel FTD susceptibility loci within LRRK2 (Leucine Rich Repeat Kinase 2), TBKBP1 (TANK-binding kinase 1 Binding Protein 1), and PGBD5 (PiggyBac Transposable Element Derived 5). Functionally, we found that expression of FTD-immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with frontotemporal dementia and is enriched in microglia compared to other central nervous system (CNS) cell types. Conclusions: We show considerable immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to risk for FTD. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD.
1

TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy

Fei Mao et al.May 8, 2021
+11
J
E
F
ABSTRACT The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well-understood. Here, we investigated the influence of genotypes at TMEM106B , a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72 , a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)- allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. In order to elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B , to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.