MA
Manimozhiyan Arumugam
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(59% Open Access)
Cited by:
45,889
h-index:
48
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower et al.Jun 1, 2012
Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome. The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome. The Human Microbiome Project (HMP), supported by the National Institutes of Health Common Fund, has the goal of characterizing the microbial communities that inhabit and interact with the human body in sickness and in health. In two Articles in this issue of Nature, the HMP Consortium presents the first population-scale details of the organismal and functional composition of the microbiota across five areas of the body. An associated News & Views discusses the initial results — which, along with those of a series of co-publications, already constitute the most extensive catalogue of organisms and genes related to the human microbiome yet published — and highlights some of the major questions that the project will tackle in the next few years.
2
0

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin et al.Mar 1, 2010
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively. The human body plays host to an estimated 100 trillion microbial cells, most of them in the gut where they have a profound influence on human physiology and nutrition — and are now regarded as crucial for human life. Gut microbes contribute to the energy harvest from food, and changes of gut microbiome may be associated with bowel diseases or obesity. Now the international MetaHIT (Metagenomics of the Human Intestinal Tract) project has published a gene catalogue of the human gut microbiome derived from 124 healthy, overweight and obese human adults, as well as inflammatory disease patients, from Denmark and Spain. The resulting data provide the first insights into this gene set — which is over 150 times larger than the human gene complement — and show that the genes are largely shared among individuals. Based on the variety of functions encoded by the gene set, it is possible to define both a minimal gut metagenome and a minimal gut bacterial genome. Deep metagenomic sequencing and characterization of the human gut microbiome from healthy and obese individuals, as well as those suffering from inflammatory bowel disease, provide the first insights into this gene set and how much of it is shared among individuals. The minimal gut metagenome as well as the minimal gut bacterial genome is also described.
0
0

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam et al.Apr 19, 2011
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
0
Citation6,449
0
Save
0

Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

Sofia Forslund et al.Dec 1, 2015
In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.
0
Citation1,772
0
Save
0

Gut microbiome development along the colorectal adenoma–carcinoma sequence

Qiang Feng et al.Mar 11, 2015
Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe(s), however, have not been surveyed in a comprehensive manner. Here we perform a metagenome-wide association study (MGWAS) on stools from advanced adenoma and carcinoma patients and from healthy subjects, revealing microbial genes, strains and functions enriched in each group. An analysis of potential risk factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment of colorectal adenoma or carcinoma. The gut microbiota is involved in the development of colorectal cancer. Here, the authors analyse the faecal microbiomes of healthy subjects and of patients with colorectal cancer or benign adenoma, revealing microbial genes, strains and functions enriched in each group.
0
Citation1,116
0
Save
0

Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer

Jun Yu et al.Sep 25, 2015
To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes.We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls.Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I-II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC.We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
0
Citation950
0
Save
Load More