MC
Melinda Coughlan
Author with expertise in Chronic Kidney Disease and its Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
827
h-index:
44
/
i10-index:
78
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes

Melinda Coughlan et al.Jan 22, 2009
+11
S
D
M
Damaged mitochondria generate an excess of superoxide, which may mediate tissue injury in diabetes. We hypothesized that in diabetic nephropathy, advanced glycation end-products (AGEs) lead to increases in cytosolic reactive oxygen species (ROS), which facilitate the production of mitochondrial superoxide. In normoglycemic conditions, exposure of primary renal cells to AGEs, transient overexpression of the receptor for AGEs (RAGE) with an adenoviral vector, and infusion of AGEs to healthy rodents each induced renal cytosolic oxidative stress, which led to mitochondrial permeability transition and deficiency of mitochondrial complex I. Because of a lack of glucose-derived NADH, which is the substrate for complex I, these changes did not lead to excess production of mitochondrial superoxide; however, when we performed these experiments in hyperglycemic conditions in vitro or in diabetic rats, we observed significant generation of mitochondrial superoxide at the level of complex I, fueled by a sustained supply of NADH. Pharmacologic inhibition of AGE-RAGE–induced mitochondrial permeability transition in vitro abrogated production of mitochondrial superoxide; we observed a similar effect in vivo after inhibiting cytosolic ROS production with apocynin or lowering AGEs with alagebrium. Furthermore, RAGE deficiency prevented diabetes-induced increases in renal mitochondrial superoxide and renal cortical apoptosis in mice. Taken together, these studies suggest that AGE-RAGE–induced cytosolic ROS production facilitates mitochondrial superoxide production in hyperglycemic environments, providing further evidence of a role for the advanced glycation pathway in the development and progression of diabetic nephropathy.
0

Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes

Aino Soro‐Paavonen et al.May 30, 2008
+13
J
A
A
Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE(-/-) model of accelerated atherosclerosis.ApoE(-/-) and RAGE(-/-)/apoE(-/-) double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis.Although diabetic apoE(-/-) mice showed increased plaque accumulation (14.9 +/- 1.7%), diabetic RAGE(-/-)/apoE(-/-) mice had significantly reduced atherosclerotic plaque area (4.9 +/- 0.4%) to levels not significantly different from control apoE(-/-) mice (4.3 +/- 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-kappaB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE(-/-) mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE(-/-)/apoE(-/-) mice.This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications.
0

Gnaiger E and the MitoEAGLE task group. Mitochondrial physiology

Erich Gnaiger et al.Jan 1, 2020
+662
P
E
E
0

Training-induced bioenergetic improvement in human skeletal muscle is associated with non-stoichiometric changes in the mitochondrial proteome without reorganization of respiratory chain content

Cesare Granata et al.Feb 22, 2021
+14
A
N
C
SUMMARY Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible and inexpensive therapeutic intervention improving mitochondrial bioenergetics and quality of life. By combining a multi-omics approach with biochemical and in silico normalization, we removed the bias arising from the training-induced increase in human skeletal muscle mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritized mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the increase in mitochondrial content. We demonstrate that enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and that training-induced supercomplex formation does not confer enhancements in mitochondrial bioenergetics. Our study provides a new analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding and calling for careful reinterpretation of previous findings.
0
Citation6
0
Save
0

Nuclear Expression and DNA Binding Capacity of Receptor for Advanced Glycation End Products in Renal Tissue

Brooke Harcourt et al.May 9, 2019
+11
H
A
B
The AGER gene encodes for a number of RAGE isoforms, with the membrane bound signal transduction and decoy circulating soluble RAGE being the best characterised. Here we demonstrate a novel nuclear isoform of RAGE in mice and human kidney cortex which by cell and size fractionation we determined to be approximately 37kda. This nuclear RAGE isoform is functional and binds to DNA sequences within the upstream 5' promoter region of its own gene, AGER. This binding was shown to be abrogated by mutating the DNA consensus binding sequences during electromobility shift assay (EMSA) and was independent of NFκ-B or AP-1 binding. Cotransfection of expression constructs encoding various RAGE isoforms along with AGER gene promoter reporter-plasmids identified that the most likely source of the nuclear isoform of RAGE was a cleavage product of the nt-RAGE isoform. In obese mice with impaired kidney function, there was increased binding of nuclear RAGE within the A. Region of ager gene promoter with corresponding increases in membrane bound RAGE in renal cells. These findings were reproduced in vitro using proximal tubule cells. Hence, we postulate that RAGE expression is in part, self-regulated by the binding of a nuclear RAGE isoform to the promoter of the AGER gene (encoding RAGE) in the kidney. We also suggest that this RAGE self-regulation is altered under pathological conditions and this may have implications for chronic kidney disease.
1

SOD2 in Skeletal Muscle: New Insights from an Inducible Deletion Model

Aowen Zhuang et al.May 21, 2021
+10
T
Y
A
Abstract Metabolic conditions such as obesity, insulin resistance and glucose intolerance are frequently associated with impairments in skeletal muscle function and metabolism. This is often linked to dysregulation of homeostatic pathways including an increase in reactive oxygen species (ROS) and oxidative stress. One of the main sites of ROS production is the mitochondria, where the flux of substrates through the electron transport chain (ETC) can result in the generation of oxygen free radicals. Fortunately, several mechanisms exist to buffer bursts of intracellular ROS and peroxide production, including the enzymes Catalase, Glutathione Peroxidase and Superoxide Dismutase (SOD). Of the latter there are two intracellular isoforms; SOD1 which is mostly cytoplasmic, and SOD2 which is found exclusively in the mitochondria. Developmental and chronic loss of these enzymes has been linked to disease in several studies, however the temporal effects of these disturbances remain largely unexplored. Here, we induced a post-developmental (8-week old mice) deletion of SOD2 in skeletal muscle (SOD2-iMKO) and demonstrate that 16 weeks of SOD2 deletion leads to no major impairment in whole body metabolism, despite these mice displaying alterations in aspects of mitochondrial abundance and voluntary ambulatory movement. Furthermore, we demonstrated that SOD2 deletion impacts on specific aspects of muscle lipid metabolism, including the abundance of phospholipids and phosphatidic acid (PA), the latter being a key intermediate in several cellular signaling pathways. Thus, our findings suggest that post-developmental deletion of SOD2 induces a more subtle phenotype than previous embryonic models have shown, allowing us to highlight a previously unrecognized link between SOD2, mitochondrial function and bioactive lipid species including PA.
0

Exploring the role of the metabolite-sensing receptor GPR109a in diabetic nephropathy

Matthew Snelson et al.Jul 31, 2019
+2
S
G
M
Abstract Alterations in gut homeostasis may contribute to the progression of diabetic nephropathy. There has been recent attention on the renoprotective effects of metabolite-sensing receptors in chronic renal injury, including the G-protein-coupled-receptor (GPR)109a, which ligates the short chain fatty acid butyrate. However, the role of GPR109a in the development of diabetic nephropathy, a milieu of diminished microbiome-derived metabolites, has not yet been determined. This study aimed to assess the effects of insufficient GPR109a signalling via genetic deletion of GPR109a on the development of renal injury in diabetic nephropathy. Gpr109a −/− mice or their wildtype littermates ( Gpr109a +/+) were rendered diabetic with streptozotocin (STZ). Mice received a control diet or an isocaloric high fiber diet (12.5% resistant starch) for 24 weeks and gastrointestinal permeability and renal injury were determined. Diabetes was associated with increased albuminuria, glomerulosclerosis and inflammation. In comparison, Gpr109a −/− mice with diabetes did not show an altered renal phenotype. Resistant starch supplementation did not afford protection from renal injury in diabetic nephropathy. Whilst diabetes was associated with alterations in intestinal morphology, intestinal permeability assessed in vivo using the FITC-dextran test was unaltered. GPR109a deletion did not worsen gastrointestinal permeability. Further, 12.5% resistant starch supplementation, at physiological concentrations, had no effect on intestinal permeability or morphology. These studies indicate that GPR109a does not play a critical role in intestinal homeostasis in a model of type 1 diabetes or in the development of diabetic nephropathy.
0

Dietary resistant starch enhances immune health of the kidney in diabetes via promoting microbially-derived metabolites and dampening neutrophil recruitment

Matthew Snelson et al.Jun 20, 2024
+6
S
D
M
Abstract Background Dietary-resistant starch is emerging as a potential therapeutic tool to limit the negative effects of diabetes on the kidneys. However, its metabolic and immunomodulatory effects have not yet been fully elucidated. Methods Six-week-old db/db mice were fed a diet containing 12.5% resistant starch or a control diet matched for equivalent regular starch for 10 weeks. db/m mice receiving the control diet were utilised as non-diabetic controls. Freshly collected kidneys were digested for flow cytometry analysis of immune cell populations. Kidney injury was determined by measuring albuminuria, histology, and immunohistochemistry. Portal vein plasma was collected for targeted analysis of microbially-derived metabolites. Intestinal histology and tight junction protein expression were assessed. Results Resistant starch limited the development of albuminuria in db/db mice. Diabetic db/db mice displayed a decline in portal vein plasma levels of acetate, propionate, and butyrate, which was increased with resistant starch supplementation. Diabetic db/db mice receiving resistant starch had a microbially-derived metabolite profile similar to that of non-diabetic db/m mice. The intestinal permeability markers lipopolysaccharide and lipopolysaccharide binding protein were increased in db/db mice consuming the control diet, which was not seen in db/db mice receiving resistant starch supplementation. Diabetes was associated with an increase in the kidney neutrophil population, neutrophil activation, number of C5aR1+ neutrophils, and urinary complement C5a excretion, all of which were reduced with resistant starch. These pro-inflammatory changes appear independent of fibrotic changes in the kidney. Conclusions Resistant starch supplementation in diabetes promotes beneficial circulating microbially-derived metabolites and improves intestinal permeability, accompanied by a modulation in the inflammatory profile of the kidney including neutrophil infiltration, complement activation, and albuminuria. These findings indicate that resistant starch can regulate immune and inflammatory responses in the kidney and support the therapeutic potential of resistant starch supplementation in diabetes on kidney health.
0

The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion in experimental diabetic kidney disease via promotion of endoplasmic reticulum stress

Aowen Zhuang et al.Jul 22, 2019
+5
F
K
A
The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. These studies indicate that increased podocyte expression of oligosaccharyltransferase-48kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
0

Globally elevating the AGE clearance receptor, OST48, does not protect against the development of diabetic kidney disease, despite improving insulin secretion.

Aowen Zhuang et al.Jul 22, 2019
+9
D
F
A
The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs. Groups of 8-week-old heterozygous knock-in male mice (n=9-12/group) over-expressing the gene encoding for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-) and litter mate controls were randomised to either (i) no diabetes or (ii) diabetes induced via multiple low-dose streptozotocin and followed for 24 weeks. By the study end, global over expression of OST48 increased glomerular OST48. This facilitated greater renal excretion of AGEs but did not affect circulating or renal AGE concentrations. Diabetes resulted in kidney damage including lower glomerular filtration rate, albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. In diabetic mice, tubulointerstitial fibrosis was further exacerbated by global increases in OST48. There was significantly insulin effectiveness, increased acute insulin secretion, fasting insulin concentrations and AUCinsulin observed during glucose tolerance testing in diabetic mice with global elevations in OST48 when compared to diabetic wild-type littermates. Overall, this study suggested that despite facilitating urinary-renal AGE clearance, there were no benefits observed on kidney functional and structural parameters in diabetes afforded by globally increasing OST48 expression. However, the improvements in insulin secretion seen in diabetic mice with global over-expression of OST48 and their dissociation from effects on kidney function warrant future investigation.