AB
Adam Bass
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(92% Open Access)
Cited by:
25,263
h-index:
62
/
i10-index:
127
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mutational heterogeneity in cancer and the search for new cancer-associated genes

Michael Lawrence et al.Jun 16, 2013
As the sample size in cancer genome studies increases, the list of genes identified as significantly mutated is likely to include more false positives; here, this problem is identified as stemming largely from mutation heterogeneity, and a new analytical methodology designed to overcome this problem is described. Cancer genomic approaches have identified scores of genes responsible for the initiation and progression of cancer. But as the sample sizes increase, the list of putatively significant genes identified by current analytical methods continues to grow and is likely to include many false positives. This study shows that this situation stems largely from mutational heterogeneity and presents a novel methodology, MutSigCV, that overcomes the problem by incorporating mutational heterogeneity into the analysis. Application of MutSigCV to more than 3,000 tumour samples from 27 different tumour types shows that mutation frequencies vary more than 1,000-fold between extreme samples both between and within tumour types. And when applied to a data set on lung cancer, MutSigCV reduced the list of significantly mutated genes from 450 to a more manageable 11, most of them previously reported to be mutated in squamous cell lung cancer. Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer1,2,3,4,5,6,7,8,9. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.
0
Citation5,105
0
Save
0

The landscape of somatic copy-number alteration across human cancers

Rameen Beroukhim et al.Feb 1, 2010
A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types. Two Articles in this issue add major data sets to the growing picture of the cancer genome. Bignell et al. analysed a large number of homozygous gene deletions in a collection of 746 publicly available cancer cell lines. Combined with information about hemizygous deletions of the same genes, the data suggest that many deletions found in cancer reflect the position of a gene at a fragile site in the genome, rather than as a recessive cancer gene whose loss confers a selective growth advantage. Beroukhim et al. present the largest data set to date on somatic copy-number variations across more than 3,000 specimens of human primary cancers. Many alterations are shared between multiple tumour types. Functional experiments demonstrate an oncogenic role for the apoptosis genes MCL1 and BCL2L1 that are associated with amplifications found in many cancers. One way of discovering genes with key roles in cancer development is to identify genomic regions that are frequently altered in human cancers. Here, high-resolution analyses of somatic copy-number alterations (SCNAs) in numerous cancer specimens provide an overview of regions of focal SCNA that are altered at significant frequency across several cancer types. An oncogenic function is also found for the anti-apoptosis genes MCL1 and BCL2L1, which reside in amplified genome regions in many cancers.
0
Citation3,607
0
Save
0

Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

Jason Locasale et al.Jul 31, 2011
Jason Locasale, Lewis Cantley, Matthew Vander Heiden and colleagues show that PHGDH is amplified in some human cancers and diverts a relatively large amount of glycolytic carbon into serine and glycine biosynthesis. They further show that PHGDH-amplified cancer cells become dependent on PHGDH for their growth, suggesting that the altered metabolic flux driven by this amplification contributes to oncogenesis. Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood1,2. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.
0
Citation1,009
0
Save
0

SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas

Adam Bass et al.Oct 4, 2009
Matthew Meyerson and colleagues report that SOX2, which encodes a transcription factor necessary for normal esophageal development, is an amplified lineage survival oncogene in lung and esophageal squamous cell carcinomas. Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development1,2. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations3, is necessary for normal esophageal squamous development4, promotes differentiation and proliferation of basal tracheal cells5 and cooperates in induction of pluripotent stem cells6,7,8. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
0
Citation894
0
Save
0

Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

Austin Dulak et al.Mar 24, 2013
Adam Bass, Gad Getz and colleagues report whole-exome sequencing of 149 esophageal adenocarcinomas (EACs) and whole-genome sequencing of 15 EACs. They identify a mutational signature defined by a high prevalence of A>C transversions, as well as 26 genes mutated at high frequency in EACs. The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of ∼15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole-exome sequencing of 149 EAC tumor-normal pairs, 15 of which have also been subjected to whole-genome sequencing. We identify a mutational signature defined by a high prevalence of A>C transversions at AA dinucleotides. Statistical analysis of exome data identified 26 significantly mutated genes. Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC. The new significantly mutated genes include chromatin-modifying factors and candidate contributors SPG20, TLR4, ELMO1 and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 identifies increased cellular invasion. Therefore, we suggest the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis.
0
Citation700
0
Save
0

CDK8 is a colorectal cancer oncogene that regulates β-catenin activity

Ron Firestein et al.Sep 1, 2008
The WNT/ β-catenin signalling pathway, which normally plays a pivotal part in development, is deregulated in almost all colorectal cancers. Retinoblastoma tumour suppressor protein (pRB) is a cell-cycle regulator that is mutated in many different types of cancer. Two papers in this issue show that signalling through the WNT pathway and that mediated by pRB are highly interconnected, and that a common denominator of their deregulation is colorectal cancer. Firestein et al. combined RNAi screening for genes required for colon cancer cell proliferation with genomic data from human colon cancer to identifty CDK8 as a novel human oncogene. CDK8, a general transcriptional regulator, functions in part by enhancing the activity of the Wnt signalling pathway. Morris et al. report that E2F1, a transcription factor that is a target of pRB, is a potent and specific inhibitor of β-catenin, and that its activity is negatively regulated by CDK8. They point out that the interaction between E2F1 and β-catenin explains the long-standing paradox that pRB, an important tumour suppressor in most other contexts, is preserved in colorectal carcinomas. In an accompanying News & Views, René Bernards considers how the crosstalk between E2F and β-catenin signalling can lead to colorectal cancer. Aberrant activation of the canonical WNT/β-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival1,2. Although dysregulated β-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation3. To identify genes that both modulate β-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex4, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and β-catenin hyperactivity. CDK8 kinase activity was necessary for β-catenin-driven transformation and for expression of several β-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in β-catenin-driven malignancies.
0
Citation632
0
Save
Load More