BM
Barmak Mostofian
Author with expertise in Mass Spectrometry Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
5
h-index:
22
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

Atomic-Resolution Prediction of Degrader-mediated Ternary Complex Structures by Combining Molecular Simulations with Hydrogen Deuterium Exchange

Tom Dixon et al.Sep 26, 2021
+32
J
R
T
Abstract Targeted protein degradation (TPD) has emerged as a powerful approach in drug discovery for removing (rather than inhibiting) proteins implicated in diseases. A key step in this approach is the formation of an induced proximity complex, where a degrader molecule recruits an E3 ligase to the protein of interest (POI), facilitating the transfer of ubiquitin to the POI and initiating the proteasomal degradation process. Here, we address three critical aspects of the TPD process: 1) formation of the ternary complex induced by a degrader molecule, 2) conformational heterogeneity of the ternary complex, and 3) assessment of ubiquitination propensity via the full Cullin Ring Ligase (CRL) macromolecular assembly. The novel approach presented here combines experimental biophysical data—in this case hydrogen-deuterium exchange mass spectrometry (HDX-MS, which measures the solvent exposure of protein residues)—with all-atom explicit solvent molecular dynamics (MD) simulations aided by enhanced sampling techniques to predict structural ensembles of ternary complexes at atomic resolution. We present results demonstrating the efficiency, accuracy, and reliability of our approach to predict ternary structure ensembles using the bromodomain of SMARCA2 (SMARCA2 BD ) with the E3 ligase VHL as the system of interest. The simulations reproduce X-ray crystal structures – including prospective simulations validated on a new structure that we determined in this work (PDB ID: 7S4E) – with root mean square deviations (RMSD) of 1.1 to 1.6 Å. The simulations also reveal a structural ensemble of low-energy conformations of the ternary complex within a broad energy basin. To further characterize the structural ensemble, we used snapshots from the aforementioned simulations as seeds for Hamiltonian replica exchange molecular dynamics (HREMD) simulations, and then perform 7.1 milliseconds of aggregate simulation time using Folding@home. The resulting free energy surface identifies the crystal structure conformation within a broad low-energy basin and the dynamic ensemble is consistent with solution-phase biophysical experimental data (HDX-MS and small-angle x-ray scattering, SAXS). Finally, we graft structures from the ternary complexes onto the full CRL and perform enhanced sampling simulations, where we find that differences in degradation efficiency can be explained by the proximity distribution of lysine residues on the POI relative to the E2-loaded ubiquitin. Several of the top predicted ubiquitinated lysine residues are validated prospectively through a ubiquitin mapping proteomics experiment.
30
Citation4
0
Save
8

Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides

Min Sung et al.May 16, 2021
+4
J
Z
M
ABSTRACT Vascular tone is dependent on smooth muscle K ATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among K ATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined the first cryoEM structures of vascular K ATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic K ATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The previously unseen ED-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. MD simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated and MgADP-bound activated conformations wherein the ED-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward K ATP channel activation.
8
Citation1
0
Save
0

HER2 Cancer Protrusion Growth Signaling Regulated by Unhindered, Localized Filopodial Dynamics

Wai Lam et al.Jun 2, 2019
+15
Y
J
W
Protrusions are plasma membrane extensions that are found in almost every cell in the human body. Cancer cell filopodial and lamellipodial protrusions play key roles in the integral processes of cell motility and signaling underlying tumor invasion and metastasis. HER2 (ErbB-2) is overexpressed in diverse types of tumors and regulates PI3K-pathway-mediated protrusion growth. It is known that HER2 resides at breast cancer cell protrusions, but how protrusion-based HER2 spatiotemporal dynamics shape cancer signaling is unclear. Here, we study how HER2 location and motion regulate protrusion signaling and growth using quantitative spatio-temporal molecular imaging approaches. Our data highlight morphologically-segregated features of filopodial and lamellipodial protrusions, in in vitro 2D breast cancer cells and in vivo intact breast tumor. Functional- segregation parallels morphological-segregation, as HER2 and its activated downstream pAKT-PI3K signaling remain spatially- localized at protrusions, provoking new protrusion growth proximal to sites of HER2 activation. HER2 in SKBR3 breast cancer cell filopodia exhibits fast, linearly-directed motion that is distinct from lamellipodia and non-protrusion subcellular regions (~3-4 times greater diffusion constant, rapid speeds of 2-3 um2/s). Surprisingly, filopodial HER2 motion is passive, requiring no active energy sources. Moreover, while HER2 motion in lamellipodia and non-protrusion regions show hindered diffusion typical of membrane proteins, HER2 diffuses freely within filopodia. We conclude that HER2 activation, propagation, and functional protrusion growth is a local process in which filopodia have evolved to exploit Brownian thermal fluctuations within a barrier-free nanostructure to transduce rapid signaling. These results support the importance of developing filopodia and other protrusion-targeted strategies for cancer.
4

Ligand-mediated structural dynamics of a mammalian pancreatic KATP channel

Min Sung et al.Mar 2, 2022
+4
B
C
M
Abstract Regulation of pancreatic K ATP channels involves orchestrated interactions of channel subunits, Kir6.2 and SUR1, and their ligands. How ligand interactions affect channel conformations and activity is not well understood. To elucidate the structural correlates pertinent to ligand interactions and channel gating, we compared cryo-EM structures of channels in the presence and absence of pharmacological inhibitors and ATP, focusing on channel conformational dynamics. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain relative to one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformation change remodels a network of intra and inter-subunit interactions as well as both the ATP and PIP 2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1’s ABC module involving residues implicated in channel function. A SUR1 residue, K134, is identified to directly contribute to the PIP 2 binding pocket. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP 2 binding, suggesting a mechanism for competitive gating by ATP and PIP 2 .
18

Continuum dynamics and statistical correction of compositional heterogeneity in multivalent IDP oligomers resolved by single-particle EM

Barmak Mostofian et al.Jun 17, 2020
+4
R
S
B
Abstract Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and control diverse cellular functions, including tuning levels of transcription, coordinating cell-signaling events, and regulating the assembly and disassembly of complex macromolecular architectures. These systems pose a significant challenge to structural investigation, due to the continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Traditional single-particle electron microscopy (EM) is a powerful tool for visualizing IDP complexes. However, the IDPs themselves are typically “invisible” by EM, undermining methods of image analysis and structural interpretation. To overcome these challenges, we developed a pipeline for automated analysis of common ‘beads-on-a-string’ type of assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ~20 kDa cross-linking hub protein LC8. This approach quantifies conformational and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. After careful validation of the methodology, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. The analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from traditional single particle EM class-averaging strategies, and shed new light on how these architectural properties contribute to their physiological roles in supramolecular assembly and transcriptional regulation. Ultimately, we expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization. Significance Statement Intrinsically disordered proteins (IDPs) or protein regions (IDRs) represent >30% of the human proteome, but mechanistically remain some of the most poorly understood classes of proteins in biology. This dearth in understanding stems from these very same intrinsic and dynamic properties, which make them difficult targets for quantitative and structural characterization. Here, we present an automated approach for extracting quantitative descriptions of conformational and compositional heterogeneity present in a common ‘beads-on-a-string’ type of multivalent IDP system from single-particle images in electron micrographs. This promising approach may be adopted to many other intrinsically disordered systems that have evaded traditional ensemble methods of characterization.
0

High-throughput single-particle tracking reveals nested membrane nanodomain organization that dictates Ras diffusion and trafficking

Yerim Lee et al.Feb 15, 2019
+8
B
T
Y
Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Using high throughput single particle tracking with photoactivated localization microscopy and detailed trajectory analysis, here we show that distinct membrane domains dictate KRas diffusion and trafficking in U2OS cells. KRas exhibits an immobile state in domains ~70 nm in size, each embedded in a larger domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRas is continuously removed from the membrane via the immobile state and replenished to the fast state, likely coupled to internalization and recycling. Importantly, both the diffusion and trafficking properties of KRas remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates KRas diffusion and trafficking and offer insight into how Ras signaling may be regulated through spatial mechanisms.
0

Computational estimation of ms-sec atomistic folding times

Upendra Adhikari et al.Sep 29, 2018
+2
J
B
U
Despite the development of massively parallel computing hardware including inexpensive graphics processing units (GPUs), it has remained infeasible to simulate the folding of atomistic proteins at room temperature using conventional molecular dynamics (MD) beyond the μs scale. Here we report the folding of atomistic, implicitly solvated protein systems with folding times τf ranging from ~100 μs to ~1s using the weighted ensemble (WE) strategy in combination with GPU computing. Starting from an initial structure or set of structures, WE organizes an ensemble of GPU-accelerated MD trajectory segments via intermittent pruning and replication events to generate statistically unbiased estimates of rate constants for rare events such as folding; no biasing forces are used. Although the variance among atomistic WE folding runs is significant, multiple independent runs are used to reduce and quantify statistical uncertainty. Folding times are estimated directly from WE probability flux and from history-augmented Markov analysis of the WE data. Three systems were examined: NTL9 at low solvent viscosity (yielding τf = 0.8-9.0 μs), NTL9 at water-like viscosity (τf = 0.2-1.9 ms), and Protein G at low viscosity (τf = 3.3-200 ms). In all cases the folding time, uncertainty, and ensemble properties could be estimated from WE simulation; for Protein G, this characterization required significantly less overall computing than would be required to observe a single folding event with conventional MD simulations. Our results suggest that the use and calibration of force fields and solvent models for precise estimation of kinetic quantities is becoming feasible.