Abstract Chronic stress is a major risk factor for psychiatric illnesses, including depression; however, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. The recent FDA approval of antidepressants with novel mechanisms of action, like Zulresso®, a synthetic neuroactive steroid analog with molecular pharmacology similar to allopregnanolone, has spurred interest in new therapeutic targets and, potentially, novel pathophysiological mechanisms for depression. Allopregnanolone acts as a positive allosteric modulator of GABA A receptors (GABA A RS), acting preferentially at δ subunit-containing receptors (δ-GABA A RS). Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone and allopregnanolone analogs; however, the role of endogenous neurosteroids in the pathophysiology of depression remains unknown. Here, we examine whether altered neurosteroid signaling may contribute to behavioral deficits following chronic unpredictable stress (CUS) in mice. We first identified reductions in expression of δ-GABA A Rs, the predominant site of action of 5a-reduced neuroactive steroids, following CUS. Additionally, utilizing LC-MS/MS we discovered a decrease in levels of allopregnanolone in the BLA, but not plasma of mice following CUS, an indication of impaired neurosteroid synthesis. CRISPR knockdown the rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2, in the BLA mimicked the behavioral deficits associated with CUS in mice. Furthermore, overexpression expression of 5α-reductase type 1 and 2 in the BLA improved behavioral outcomes. Collectively, this suggests chronic stress impairs endogenous neurosteroid signaling in the BLA which is sufficient to induce behavioral deficits similar to those observed following CUS. Further, these studies suggest that the therapeutic efficacy of allopregnanolone-based treatments may be due to their ability to directly target the underlying pathophysiology of mood disorders. Therefore, targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy for the treatment of mood disorders.