PM
Pierre Magistretti
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(69% Open Access)
Cited by:
13,922
h-index:
101
/
i10-index:
346
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization.

Luc Pellerin et al.Oct 25, 1994
P
L
Glutamate, released at a majority of excitatory synapses in the central nervous system, depolarizes neurons by acting at specific receptors. Its action is terminated by removal from the synaptic cleft mostly via Na(+)-dependent uptake systems located on both neurons and astrocytes. Here we report that glutamate, in addition to its receptor-mediated actions on neuronal excitability, stimulates glycolysis--i.e., glucose utilization and lactate production--in astrocytes. This metabolic action is mediated by activation of a Na(+)-dependent uptake system and not by interaction with receptors. The mechanism involves the Na+/K(+)-ATPase, which is activated by an increase in the intracellular concentration of Na+ cotransported with glutamate by the electrogenic uptake system. Thus, when glutamate is released from active synapses and taken up by astrocytes, the newly identified signaling pathway described here would provide a simple and direct mechanism to tightly couple neuronal activity to glucose utilization. In addition, glutamate-stimulated glycolysis is consistent with data obtained from functional brain imaging studies indicating local nonoxidative glucose utilization during physiological activation.
0

Oligodendroglia metabolically support axons and contribute to neurodegeneration

Youngjin Lee et al.Jul 1, 2012
+10
Y
B
Y
Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.
0

Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation

Akinobu Suzuki et al.Mar 1, 2011
+4
O
S
A

Summary

 We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.
0

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy

Frédéric Bevilacqua et al.Mar 1, 2005
+4
P
B
F
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [ Cuche , Appl. Opt.38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
0

Energy on Demand

Pierre Magistretti et al.Jan 22, 1999
R
D
L
P
New imaging techniques can see into the functioning brain, revealing the regions that are active during certain tasks and sensations. Magistretti et al., in their Perspective, take this notion one step further and, by careful analysis of the biochemistry that gives rise to imaging signals, they deduce some of the cellular and molecular events that accompany neuronal activity in the working brain, ultimately laying the groundwork for determining the biochemistry that underlies human cognition.
0

In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration

Keiichiro Suzuki et al.Nov 15, 2016
+32
Z
T
K
A method for CRISPR-based genome editing that harnesses cellular non-homologous end joining activity to achieve targeted DNA knock-in in non-dividing tissues. A current challenge in genome editing is achieving efficient targeted integration of transgenes in post-mitotic cells. These authors develop a method for CRISPR-based genome editing that harnesses the non-homologous-end-joining double-strand-break repair pathway to achieve targeted knock-in in dividing and non-dividing tissues. Although further development is needed to increase efficacy, the authors show the potential application of this method for targeted knock-in in post-mitotic neurons and other non-dividing tissues, and provide initial exploratory data on its potential application for disease correction in retinal pigment epithelium models. Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient1, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders2. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9)3,4 technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
0
Citation988
0
Save
0

Evidence Supporting the Existence of an Activity-Dependent Astrocyte-Neuron Lactate Shuttle

Luc Pellerin et al.Jan 1, 1998
+5
P
G
L
Mounting evidence from in vitro experiments indicates that lactate is an efficient energy substrate for neurons and that it may significantly contribute to maintain synaptic transmission, particularly during periods of intense activity. Since lactate does not cross the blood-brain barrier easily, blood-borne lactate cannot be a significant source. In vitro studies by several laboratories indicate that astrocytes release large amounts of lactate. In 1994, we proposed a mechanism whereby lactate could be produced by astrocytes in an activity-dependent, glutamate-mediated manner. Over the last 2 years we have obtained further evidence supporting the notion that a transfer of lactate from astrocytes to neurons might indeed take place. In this article, we first review data showing the presence of mRNA encoding for two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Second, by using monoclonal antibodies selectively directed against the two distinct lactate dehydrogenase isoforms, LDH<sub>1</sub> and LDH<sub>5</sub>, a specific cellular distribution between neurons and astrocytes is revealed which suggests that a population of astrocytes is a lactate ‘source’ while neurons may be a lactate ‘sink’. Third, we provide biochemical evidence that lactate is interchangeable with glucose to support oxidative metabolism in cortical neurons. This set of data is consistent with the existence of an activity-dependent astrocyte-neuron lactate shuttle for the supply of energy substrates to neurons.
0

Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

Benjamin Rappaz et al.Nov 14, 2005
+3
E
F
B
We have developed a digital holographic microscope (DHM), in a transmission mode, adapted to the quantitative study of cellular dynamics. Living cells in culture are optically probed by measuring the phase shift they produce on the transmitted wave front. The high temporal stability of the phase signal, equivalent to lambda/1800, and the low acquisition time (~20micros) enable to monitor cellular dynamics processes. An experimental procedure allowing to calculate both the integral refractive index and the cellular thickness (morphometry) from the measured phase shift is presented. Specifically, the method has been applied to study the dynamics of neurons in culture during a hypotonic stress. Such stress produces a paradoxical decrease of the phase which can be entirely resolved by applying the methodological approach described in this article; indeed the method allows to determine independently the thickness and the integral refractive index of cells.
0
Citation634
0
Save
0

Marker-free phase nanoscopy

Yann Cotte et al.Jan 18, 2013
+5
P
M
Y
Load More