TZ
Trinity Zang
Author with expertise in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
5,499
h-index:
26
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu

Stuart Neil et al.Jan 1, 2008
Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-α, and it consists of protein-based tethers, which we term ‘tetherins’, that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin’s antiviral activity is a potential therapeutic strategy in HIV/AIDS. Studies of Vpu, an HIV-1 accessory protein required for efficient HIV-1 particle release in some human cells, pointed to the existence of a tether based in a cell surface protein inducible by interferon-α. That tether has now been identified as the host cell molecule CD317— renamed tetherin — a membrane protein with no previously known function. Tetherin is shown to be involved in the retention of HIV-1 virions at the cell surface. Vpu neutralizes its effect, allowing the release and propagation of virus particles. Inhibition of Vpu function is therefore a possible therapeutic strategy in HIV/AIDS. The HIV protein Vpu is required for the release of viral particles. This paper shows that it counteracts the host cell protein CD317, renamed as tetherin. Tetherin is involved in the retention of newly budded HIV-1 virions at the cell surface.
0

HIV therapy by a combination of broadly neutralizing antibodies in humanized mice

Florian Klein et al.Oct 23, 2012
Passive immunotherapy with a combination of neutralizing monoclonal antibodies is shown to be effective in suppressing HIV replication in a humanized mouse model. Broadly neutralizing antibodies to human immunodeficiency virus-1 (HIV-1) are slow to develop and are found in only a fraction of patients, but they can prevent infection and so are of great importance for HIV therapy design. Previous work has shown that the virus can quickly evolve resistance against these antibodies; however, more potent antibodies are now available. Michel Nussenzweig and colleagues therefore re-examined the potential of antibody therapy in 'humanized' mice. They demonstrate that passive immunotherapy with combinations of broadly neutralizing antibodies effectively controls HIV-1 infection. The authors suggest that it is time to re-examine monoclonal antibodies as therapeutics in HIV-1-infected individuals. Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection1,2. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time3,4. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design5,6,7,8,9. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy10,11,12, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.
0
Citation477
0
Save
0

MX2 is an interferon-induced inhibitor of HIV-1 infection

Melissa Kane et al.Oct 1, 2013
MX2 is shown to be an interferon-induced inhibitor of HIV-1 infection, and this antiviral activity may involve the inhibition of nuclear import of subviral complexes. Two groups report in this issue of Nature that the human interferon-induced GTP-binding protein MX2 is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) and a number of other lentiviruses. For some years it had been known that the related protein MX1 can inhibit HIV-1 replication in humans, but MX2 was thought to be devoid of antiviral activity. The anti-HIV-1 action of MX2 is much less dependent on GTPase activity than is the broader antiviral activity of MX1, pointing to possible mechanistic differences between them. HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN1,2. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells3,4. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-α at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-α. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.
0
Citation464
0
Save
0

Broad-Spectrum Inhibition of Retroviral and Filoviral Particle Release by Tetherin

Nolwenn Jouvenet et al.Nov 27, 2008
ABSTRACT The expression of many putative antiviral genes is upregulated when cells encounter type I interferon (IFN), but the actual mechanisms by which many IFN-induced gene products inhibit virus replication are poorly understood. A recently identified IFN-induced antiretroviral protein, termed tetherin (previously known as BST-2 or CD317), blocks the release of nascent human immunodeficiency virus type 1 (HIV-1) particles from infected cells, and an HIV-1 accessory protein, Vpu, acts as a viral antagonist of tetherin. Here, we show that tetherin is capable of blocking not only the release of HIV-1 particles but also the release of particles assembled using the major structural proteins of a variety of prototype retroviruses, including members of the alpharetrovirus, betaretrovirus, deltaretrovirus, lentivirus, and spumaretrovirus families. Moreover, we show that the release of particles assembled using filovirus matrix proteins from Marburg virus and Ebola virus is also sensitive to inhibition by tetherin. These findings indicate that tetherin is a broadly specific inhibitor of enveloped particle release, and therefore, inhibition is unlikely to require specific interactions with viral proteins. Nonetheless, tetherin colocalized with nascent virus-like particles generated by several retroviral and filoviral structural proteins, indicating that it is present at, or recruited to, sites of particle assembly. Overall, tetherin is potentially active against many enveloped viruses and likely to be an important component of the antiviral innate immune defense.
0
Citation376
0
Save
0

CG dinucleotide suppression enables antiviral defence targeting non-self RNA

Matthew Takata et al.Sep 26, 2017
Vertebrate genomes exhibit marked CG suppression-that is, lower than expected numbers of 5'-CG-3' dinucleotides. This feature is likely to be due to C-to-T mutations that have accumulated over hundreds of millions of years, driven by CG-specific DNA methyl transferases and spontaneous methyl-cytosine deamination. Many RNA viruses of vertebrates that are not substrates for DNA methyl transferases mimic the CG suppression of their hosts. This property of viral genomes is unexplained. Here we show, using synonymous mutagenesis, that CG suppression is essential for HIV-1 replication. The deleterious effect of CG dinucleotides on HIV-1 replication was cumulative, associated with cytoplasmic RNA depletion, and was exerted by CG dinucleotides in both translated and non-translated exonic RNA sequences. A focused screen using small inhibitory RNAs revealed that zinc-finger antiviral protein (ZAP) inhibited virion production by cells infected with CG-enriched HIV-1. Crucially, HIV-1 mutants containing segments whose CG content mimicked random nucleotide sequence were defective in unmanipulated cells, but replicated normally in ZAP-deficient cells. Crosslinking-immunoprecipitation-sequencing assays demonstrated that ZAP binds directly and selectively to RNA sequences containing CG dinucleotides. These findings suggest that ZAP exploits host CG suppression to identify non-self RNA. The dinucleotide composition of HIV-1, and perhaps other RNA viruses, appears to have adapted to evade this host defence.
0
Citation369
0
Save
0

Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

Matthew McNatt et al.Feb 13, 2009
Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.
0
Citation297
0
Save
Load More