MG
Marcio Gameiro
Author with expertise in Application of Genetic Programming in Machine Learning
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
8
h-index:
19
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop

Bree Cummins et al.Jun 11, 2022
+29
R
J
B
Abstract Computational tools addressing various components of design-build-test-learn loops (DBTL) for the construction of synthetic genetic networks exist, but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called DART (Design Assemble Round Trip). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection, and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions.
6

Computational Prediction of Synthetic Circuit Function Across Growth Conditions

Bree Cummins et al.Jun 13, 2022
+28
K
J
B
Abstract A challenge in the design and construction of synthetic genetic circuits is that they will operate within biological systems that have noisy and changing parameter regimes that are largely unmeasurable. The outcome is that these circuits do not operate within design specifications or have a narrow operational envelope in which they can function. This behavior is often observed as a lack of reproducibility in function from day to day or lab to lab. Moreover, this narrow range of operating conditions does not promote reproducible circuit function in deployments where environmental conditions for the chassis are changing, as environmental changes can affect the parameter space in which the circuit is operating. Here we describe a computational method for assessing the robustness of circuit function across broad parameter regions. Previously designed circuits are assessed by this computational method and then circuit performance is measured across multiple growth conditions in budding yeast. The computational predictions are correlated with experimental findings, suggesting that the approach has predictive value for assessing the robustness of a circuit design.