ABSTRACT In the human posterior parietal cortex (PPC), single units encode high-dimensional information with partially mixed representations that enable small populations of neurons to encode many variables relevant to movement planning, execution, cognition, and perception. Here we test whether a PPC neuronal population previously demonstrated to encode visual and motor information is similarly selective in the somatosensory domain. We recorded from 1423 neurons within the PPC of a human clinical trial participant during objective touch presentation and during tactile imagery. Neurons encoded experienced touch with bilateral receptive fields, organized by body part, and covered all tested regions. Tactile imagery evoked body part specific responses that shared a neural substrate with experienced touch. Our results are the first neuron level evidence of touch encoding in human PPC and its cognitive engagement during tactile imagery which may reflect semantic processing, sensory anticipation, and imagined touch.