JL
Jean‐Charles Lambert
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
6
h-index:
21
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

A meta-analysis of genome-wide association studies identifies new genetic loci associated with all-cause and vascular dementia

Bernard Fongang et al.Oct 14, 2022
ABSTRACT Dementia is multifactorial with Alzheimer (AD) and vascular (VaD) pathologies making the largest contributions. Genome-wide association studies (GWAS) have identified over 70 genetic risk loci for AD but the genomic determinants of other dementias, including VaD remain understudied. We hypothesize that common forms of dementia will share genetic risk factors and conducted the largest GWAS to date of “all-cause dementia” (ACD) and examined the genetic overlap with VaD. Our dataset includes 809,299 individuals from European, African, Asian, and Hispanic ancestries with 46,902 and 8,702 cases of ACD and VaD, respectively. We replicated known AD loci at genome-wide significance for both ACD and VaD and conducted bioinformatic analyses to prioritize genes that are likely functionally relevant, and shared with closely related traits and risk factors. For ACD, novel loci identified were associated with energy transport ( SEMA4D ), neuronal excitability ( ANO3 ), amyloid deposition in the brain ( RBFOX1 ), and MRI markers of small vessel disease ( HBEGF ). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance ( SPRY2, FOXA2, AJAP1 , and PSMA3 ). Our study identified genetic risks underlying all-cause dementia, demonstrating overlap with neurodegenerative processes, vascular risk factors (Type-II diabetes, blood pressure, lipid) and cerebral small vessel disease. These novel insights could lead to new prevention and treatment strategies for all dementias.
2
Citation5
0
Save
0

Genome-wide Association Study Links APOEϵ4 and BACE1 Variants with Plasma Amyloid β Levels

Vincent Damotte et al.Sep 27, 2017
Background: Amyloid β (Aβ) peptides are the products of the catalytic processing of the Aβ precursor protein (APP) by the β-secretase, BACE1 and the γ-secretase complex. Impairment of the Aβ production/clearance balance is the major pathophysiological hypothesis in Alzheimer's disease. Plasma Aβ levels are easy to measure in large numbers and therefore can be used as an endophenotype to study the genetics of Aβ and its relevance to AD. Methods: We performed genome-wide association studies (GWAS) of plasma Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 ratio in 12,369 non-demented participants across 8 studies, using genetic data imputed on the 1000 Genomes phase 1 version 3 reference panel. To gain further insight, we performed LD-score regression analysis of plasma Aβ-42 and Aβ-40 levels using previously published GWAS of AD and other related traits, and pathway analyses. Results: We identified 21 variants reaching genome-wide significance across two loci. The most significant locus spanned the APOE gene, with significant associations with plasma Aβ42 levels (p = 9.01×10-13) and plasma Aβ42/Aβ40 ratio (p = 6.46×10-20). The second locus was located on chromosome 11, near the BACE1 gene (p = 2.56×10-8). We also observed suggestive evidence of association (p < 1×10-5) around genes involved in Aβ metabolism including APP and PSEN2. Conclusion: Using plasma Aβ40 and Aβ42 levels, this GWAS was able to identify relevant and central actors of the APP metabolism in AD. Overall, this study strengthens the utility of plasma Aβ levels both as an endophenotype and a biomarker.
1

Primary brain cell infection byToxoplasma gondiireveals the extent and dynamics of parasite differentiation and its impact on neuron biology

Thomas Mouveaux et al.Mar 15, 2021
ABSTRACT Toxoplasma gondii is a eukaryotic parasite that forms latent cysts in the brain of immunocompetent individuals. The latent parasite infection of the immune-privileged central nervous system is linked to most complications. With no drug currently available to eliminate the latent cysts in the brain of infected hosts, the consequences of neurons’ long-term infection are unknown. It has long been known that T. gondii specifically differentiates into a latent form (bradyzoite) in neurons, but how the infected neuron responds to the infection remains to be elucidated. We have established a new in vitro model resulting in the production of mature bradyzoite cysts in brain cells. Using dual, host and parasite RNA-seq, we characterized the dynamics of differentiation of the parasite, revealing the involvement of key pathways in this process. Moreover, we identified how the infected brain cells responded to the parasite infection revealing the drastic changes that take place. We showed that neuronal-specific pathways are strongly affected, with synapse signaling being particularly affected, especially glutamatergic synapse signaling. The establishment of this new in vitro model allows investigating both the dynamics of parasite differentiation and the specific response of neurons to the long-term infection by this parasite.
0

Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner

Fanny Eysert et al.Sep 13, 2019
Although APP metabolism is being intensively investigated, a large fraction of its modulators are yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer’s disease (AD), as a potential key modulator of axon guidance; a neuronal process dependent on the APP metabolism regulation. We found that FERMT2 directly interacts with APP to modulate its metabolism and that FERMT2 under-expression impacts axonal growth, synaptic connectivity and long-term potentiation in an APP-dependent manner. Lastly, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3’UTR of FERMT2, induced a down-regulation of FERMT2 expression through binding of miR-4504. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 under-expression in neurons and insight on how this may influence AD pathogenesis.
0

BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation

Maxime Sartori et al.Nov 7, 2018
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however, unlike TgMAPT mice, TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After sacrifice of the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified, among others, an inhibitor of Calcineurin, a Ser/Thr phosphatase. We determined that Calcineurin dephosphorylates a Cyclin-dependent kinase phosphorylation site at T348 that shifts the dynamic equilibrium of the open/closed conformation of the neuronal BIN1 isoform towards the open form. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that the levels of the neuronal BIN1 isoform were decreased in AD brains, whereas phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Any increase in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.