KS
Kevin Struhl
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
44
(68% Open Access)
Cited by:
21,604
h-index:
125
/
i10-index:
280
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules.

Kevin Struhl et al.Mar 1, 1979
R
S
D
K
A set of vector DNAs (Y vectors) useful for the cloning of DNA fragments in Saccharomyces cerevisiae (yeast) and in Escherichia coli are characterized. With these vectors, three modes of yeast transformation are defined. (i) Vectors containing yeast chromosomal DNA sequences (YIp1, YIp5) transform yeast cells at low frequency (1--10 colonies per microgram) and integrate into the genome by homologous recombination; this recombination is reversible. (ii) Hybrids containing endogenous yeast plasmid DNA sequences (YEp2, YEp6) transform yeast cells at much higher frequency (5000--20,000 colonies per microgram). Such molecules replicate autonomously with an average copy number of 5--10 covalently closed circles per yeast cell and also replicate as a chromosomally integrated structure. This DNA may be physically isolated in intact form from either yeast or E. coli and used to transform either organism at high frequency. (iii) Vectors containing a 1.4-kilobase yeast DNA fragment that includes the centromere linked trp1 gene (YRp7) transform yeast with an efficiency of 500--5000 colonies per microgram; such molecules behave as minichromosomes because they replicate autonomously but do not integrate into the genome. The uses of Y vectors for the following genetic manipulations in yeast are discussed: isolation of genes; construction of haploid strains that are merodiploid for a particular DNA sequence; and directed alterations of the yeast genome. General methods for the selection and the analysis of these events are presented.
0
Citation1,499
0
Save
0

An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation

Dimitrios Iliopoulos et al.Oct 30, 2009
K
H
D
Inflammation is linked clinically and epidemiologically to cancer, and NF-κB appears to play a causative role, but the mechanisms are poorly understood. We show that transient activation of Src oncoprotein can mediate an epigenetic switch from immortalized breast cells to a stably transformed line that forms self-renewing mammospheres that contain cancer stem cells. Src activation triggers an inflammatory response mediated by NF-κB that directly activates Lin28 transcription and rapidly reduces let-7 microRNA levels. Let-7 directly inhibits IL6 expression, resulting in higher levels of IL6 than achieved by NF-κB activation. IL6-mediated activation of the STAT3 transcription factor is necessary for transformation, and IL6 activates NF-κB, thereby completing a positive feedback loop. This regulatory circuit operates in other cancer cells lines, and its transcriptional signature is found in human cancer tissues. Thus, inflammation activates a positive feedback loop that maintains the epigenetic transformed state for many generations in the absence of the inducing signal.
0
Citation1,332
0
Save
0

Targeted Recruitment of Set1 Histone Methylase by Elongating Pol II Provides a Localized Mark and Memory of Recent Transcriptional Activity

Huck‐Hui Ng et al.Mar 1, 2003
K
R
F
H
Set1, the yeast histone H3-lysine 4 (H3-K4) methylase, is recruited by the Pol II elongation machinery to a highly localized domain at the 5′ portion of active mRNA coding regions. Set1 association depends upon the TFIIH-associated kinase that phosphorylates the Pol II C-terminal domain (CTD) and mediates the transition between initiation and elongation, and Set1 interacts with the form of Pol II whose CTD is phosphorylated at serine 5 but not serine 2. The Rtf1 and Paf1 components of the Pol II-associated Paf1 complex are also important for Set1 recruitment. Although the level of dimethylated H3-K4 is fairly uniform throughout the genome, the pattern of trimethylated H3-K4 strongly correlates with Set1 occupancy. Hypermethylated H3-K4 within the mRNA coding region persists for considerable time after transcriptional inactivation and Set1 dissociation from the chromatin, indicating that H3-K4 hypermethylation provides a molecular memory of recent transcriptional activity. Set1, the yeast histone H3-lysine 4 (H3-K4) methylase, is recruited by the Pol II elongation machinery to a highly localized domain at the 5′ portion of active mRNA coding regions. Set1 association depends upon the TFIIH-associated kinase that phosphorylates the Pol II C-terminal domain (CTD) and mediates the transition between initiation and elongation, and Set1 interacts with the form of Pol II whose CTD is phosphorylated at serine 5 but not serine 2. The Rtf1 and Paf1 components of the Pol II-associated Paf1 complex are also important for Set1 recruitment. Although the level of dimethylated H3-K4 is fairly uniform throughout the genome, the pattern of trimethylated H3-K4 strongly correlates with Set1 occupancy. Hypermethylated H3-K4 within the mRNA coding region persists for considerable time after transcriptional inactivation and Set1 dissociation from the chromatin, indicating that H3-K4 hypermethylation provides a molecular memory of recent transcriptional activity.
0
Citation1,091
0
Save
0

Unbiased Mapping of Transcription Factor Binding Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of Noncoding RNAs

Simon Cawley et al.Feb 1, 2004
+17
H
S
S
Using high-density oligonucleotide arrays representing essentially all nonrepetitive sequences on human chromosomes 21 and 22, we map the binding sites in vivo for three DNA binding transcription factors, Sp1, cMyc, and p53, in an unbiased manner. This mapping reveals an unexpectedly large number of transcription factor binding site (TFBS) regions, with a minimal estimate of 12,000 for Sp1, 25,000 for cMyc, and 1600 for p53 when extrapolated to the full genome. Only 22% of these TFBS regions are located at the 5′ termini of protein-coding genes while 36% lie within or immediately 3′ to well-characterized genes and are significantly correlated with noncoding RNAs. A significant number of these noncoding RNAs are regulated in response to retinoic acid, and overlapping pairs of protein-coding and noncoding RNAs are often coregulated. Thus, the human genome contains roughly comparable numbers of protein-coding and noncoding genes that are bound by common transcription factors and regulated by common environmental signals.
0
Citation1,074
0
Save
0

Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission

Heather Hirsch et al.Sep 15, 2009
K
P
D
H
Abstract The cancer stem cell hypothesis suggests that, unlike most cancer cells within a tumor, cancer stem cells resist chemotherapeutic drugs and can regenerate the various cell types in the tumor, thereby causing relapse of the disease. Thus, drugs that selectively target cancer stem cells offer great promise for cancer treatment, particularly in combination with chemotherapy. Here, we show that low doses of metformin, a standard drug for diabetes, inhibits cellular transformation and selectively kills cancer stem cells in four genetically different types of breast cancer. The combination of metformin and a well-defined chemotherapeutic agent, doxorubicin, kills both cancer stem cells and non–stem cancer cells in culture. Furthermore, this combinatorial therapy reduces tumor mass and prevents relapse much more effectively than either drug alone in a xenograft mouse model. Mice seem to remain tumor-free for at least 2 months after combinatorial therapy with metformin and doxorubicin is ended. These results provide further evidence supporting the cancer stem cell hypothesis, and they provide a rationale and experimental basis for using the combination of metformin and chemotherapeutic drugs to improve treatment of patients with breast (and possibly other) cancers. [Cancer Res 2009;69(19):7507–11]
0
Citation1,052
0
Save
0

Sterile host yeasts (SHY): A eukaryotic system of biological containment for recombinant DNA experiments

David Botstein et al.Dec 1, 1979
+5
S
S
D
A system of biological containment for recombinant DNA experiments in Saccharomyces cerevisiae (Brewer's/Baker's yeast) is described. The principle of containment is sterility: the haploid host strains all contain a matingtype-non-specific sterile mutation. The hosts also contain four auxotrophic mutations suitable for selection for the various kinds of vectors used. All vectors are derivatives of pBR322 which can be selected and maintained in both yeast and Escherichia coli. The system has recently been certified at the HV2 level by the National Institutes of Health.
0
Citation966
0
Save
0

Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast

Ian Hope et al.Sep 1, 1986
K
I
Yeast GCN4 protein binds specifically to the promoters of amino acid biosynthetic genes and coordinately induces their transcription. Serially deleted GCN4 and hybrid LexA-GCN4 proteins were assayed for specific DNA binding activity in vitro, and for stimulation of transcription in vivo. The specific DNA binding activity resides in the 60 C-terminal amino acids, a basic region of GCN4. However, certain deletions containing the entire DNA binding region are unable to activate transcription and instead act as repressors in vivo. The activation function appears to critically involve just 19 amino acids that are centrally located in an acidic region of GCN4. In addition to their functional separation, the DNA binding and transcriptional activation regions of the protein can be separated physically by elastase cleavage. The implications of these results for the mechanisms of DNA sequence recognition and transcription activation are discussed.
0
Citation939
0
Save
0

TREX is a conserved complex coupling transcription with messenger RNA export

Katja Sträßer et al.Apr 28, 2002
+8
P
S
K
0
Citation815
0
Save
0

Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain

Qin Feng et al.Jun 1, 2002
+4
H
H
Q
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two families of proteins, the protein arginine methyltransferase family and the SET-domain-containing methyltransferase family. Here, we report that lysine 79 (K79) of H3, located in the globular domain, can be methylated. K79 methylation occurs in a variety of organisms ranging from yeast to human. In budding yeast, K79 methylation is mediated by the silencing protein DOT1. Consistent with conservation of K79 methylation, DOT1 homologs can be found in a variety of eukaryotic organisms. We identified a human DOT1-like (DOT1L) protein and demonstrated that this protein possesses intrinsic H3-K79-specific histone methyltransferase (HMTase) activity in vitro and in vivo. Furthermore, we found that K79 methylation level is regulated throughout the cell cycle. Thus, our studies reveal a new methylation site and define a novel family of histone lysine methyltransferase.
0
Citation801
0
Save
0

STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer

Dimitrios Iliopoulos et al.Aug 1, 2010
+2
H
S
D
A transient inflammatory signal can initiate an epigenetic switch from nontransformed to cancer cells via a positive feedback loop involving NF-κB, Lin28, let-7, and IL-6. We identify differentially regulated microRNAs important for this switch and putative transcription factor binding sites in their promoters. STAT3, a transcription factor activated by IL-6, directly activates miR-21 and miR-181b-1. Remarkably, transient expression of either microRNA induces the epigenetic switch. MiR-21 and miR-181b-1, respectively, inhibit PTEN and CYLD tumor suppressors, leading to increased NF-κB activity required to maintain the transformed state. These STAT3-mediated regulatory circuits are required for the transformed state in diverse cell lines and tumor growth in xenografts, and their transcriptional signatures are observed in colon adenocarcinomas. Thus, STAT3 is not only a downstream target of IL-6 but, with miR-21, miR-181b-1, PTEN, and CYLD, is part of the positive feedback loop that underlies the epigenetic switch that links inflammation to cancer.
0
Citation795
0
Save
Load More