MB
M. Boer
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
11
h-index:
32
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Temperature response of wheat affects final height and the timing of stem elongation under field conditions

Lukas Kronenberg et al.Sep 4, 2019
+4
M
S
L
Abstract In wheat, temperature affects the timing and intensity of stem elongation (SE). Genetic variation for this process is therefore important for adaptation. This study investigates the genetic response to temperature fluctuations during SE and its relationship to phenology and height. Canopy height of 315 wheat genotypes (GABI wheat panel) was scanned twice weekly in the field phenotyping platform (FIP) of ETH Zurich using a LIDAR. Temperature response was modelled using linear regressions between SE and mean temperature in each measurement interval. This led to a temperature–responsive (slope) and a temperature-irresponsive (intercept) component. The temperature response was highly heritable (H 2 = 0.81) and positively related to a later start and end of SE as well as final height. Genome-wide association mapping revealed three temperature-responsive and four temperature-irresponsive quantitative trait loci (QTL). Furthermore, putative candidate genes for temperature-response QTL were frequently related to the flowering pathway in A. thaliana , whereas temperature-irresponsive QTLs corresponded with growth and reduced height genes. In combination with Rht and Ppd alleles, these loci, together with the loci for the timing of SE accounted for 71% of the variability in height. This demonstrates how high-throughput field phenotyping combined with environmental covariates can contribute to a smarter selection of climate-resilient crops. Highlight We measured ambient temperature response of stem elongation in wheat grown under field conditions. The results indicate that temperature response is highly heritable and linked to the flowering pathway.
0
Citation4
0
Save
4

Tensor P-Spline Smoothing for Spatial Analysis of Plant Breeding Trials

Hans‐Peter Piepho et al.May 11, 2021
E
M
H
ABSTRACT Large agricultural field trials may display irregular spatial trends that cannot be fully captured by a purely randomization-based analysis. For this reason, paralleling the development of analysis-of-variance procedures for randomized field trials, there is a long history of spatial modelling for field trials, starting with the early work of Papadakis on nearest neighbour analysis, which can be cast in terms of first or second differences among neighbouring plot values. This kind of spatial modelling is amenable to a natural extension using P-splines, as has been demonstrated in recent publications in the field. Here, we consider the P-spline framework, focussing on model options that are easy to implement in linear mixed model packages. Two examples serve to illustrate and evaluate the methods. A key conclusion is that first differences are rather competitive with second differences. A further key observation is that second differences require special attention regarding the representation of the null space of the smooth terms for spatial interaction, and that an unstructured variance-covariance structure is required to ensure invariance to translation and rotation of eigenvectors associated with that null space. We develop a strategy that permits fitting this model with ease, but the approach is more demanding than that needed for fitting models using first differences. Hence, even though in other areas second differences are very commonly used in the application of P-splines, our main conclusion is that with field trials first differences have advantages for routine use.
4
Citation4
0
Save
1

A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data

Diana Pérez-Valencia et al.Aug 10, 2021
+6
M
M
D
ABSTRACT High throughput phenotyping (HTP) platforms and devices are increasingly used for the characterization of growth and developmental processes for large sets of plant genotypes. Such HTP data require challenging statistical analyses in which longitudinal genetic signals need to be estimated against a background of spatio-temporal noise processes. We propose a two-stage approach for the analysis of such longitudinal HTP data. In a first stage, we correct for design features and spatial trends per time point. In a second stage, we focus on the longitudinal modelling of the spatially corrected data, thereby taking advantage of shared longitudinal features between genotypes and plants within genotypes. We propose a flexible hierarchical three-level P-spline growth curve model, with plants/plots nested in genotypes, and genotypes nested in populations. For selection of genotypes in a plant breeding context, we show how to extract new phenotypes, like growth rates, from the estimated genotypic growth curves and their first-order derivatives. We illustrate our approach on HTP data from the PhenoArch greenhouse platform at INRAE Montpellier and the outdoor Field Phenotyping platform at ETH Zürich.
1
Citation2
0
Save
0

A complete chromosome substitution mapping panel reveals genome-wide epistasis in Arabidopsis

Cris Wijnen et al.Jul 9, 2024
+8
J
R
C
Abstract Chromosome substitution lines (CSLs) are tentatively supreme resources to investigate non-allelic genetic interactions. However, the difficulty of generating such lines in most species largely yielded imperfect CSL panels, prohibiting a systematic dissection of epistasis. Here, we present the development and use of a unique and complete panel of CSLs in Arabidopsis thaliana , allowing the full factorial analysis of epistatic interactions. A first comparison of reciprocal single chromosome substitutions revealed a dependency of QTL detection on different genetic backgrounds. The subsequent analysis of the complete panel of CSLs enabled the mapping of the genetic interactors and identified multiple two- and three-way interactions for different traits. Some of the detected epistatic effects were as large as any observed main effect, illustrating the impact of epistasis on quantitative trait variation. We, therefore, have demonstrated the high power of detection and mapping of genome-wide epistasis, confirming the assumed supremacy of comprehensive CSL sets.
0
Citation1
0
Save
1

Genetic mapping of genotype-by-ploidy effects in Arabidopsis thaliana

Cris Wijnen et al.Nov 20, 2021
+6
A
F
C
Abstract Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid-inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype x ploidy (GxP) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a GxP effect. Additionally, by investigating a population derived from late flowering accessions we revealed a major vernalisation specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions.
1

A complete chromosome substitution mapping panel reveals genome-wide epistasis in Arabidopsis

Cris Wijnen et al.Oct 5, 2018
+9
J
R
C
Chromosome substitution lines (CSLs) are tentatively supreme resources to investigate non-allelic genetic interactions. However, the difficulty of generating such lines in most species largely yielded imperfect CSL panels, prohibiting a systematic dissection of epistasis. Here, we present the development and use of a unique and complete panel of CSLs in Arabidopsis thaliana, allowing the full factorial analysis of epistatic interactions. A first comparison of reciprocal single chromosome substitutions revealed a dependency of QTL detection on different genetic backgrounds. The subsequent analysis of the complete panel of CSLs enabled the mapping of the genetic interactors and identified multiple two- and three-way interactions for different traits. Some of the detected epistatic effects were as large as any observed main effect, illustrating the impact of epistasis on quantitative trait variation. We, therefore, have demonstrated the high power of detection and mapping of genome-wide epistasis, confirming the assumed supremacy of comprehensive CSL sets.
5

A one-stage approach for the spatio-temporal analysis of high-throughput phenotyping data

Diana Pérez-Valencia et al.Feb 1, 2023
+3
M
M
D
Abstract This work is motivated by the need to accurately estimate genetic effects over time when analysing data from high-throughput phenotyping (HTP) experiments. The HTP data we deal with here are characterised by phenotypic traits measured multiple times in the presence of spatial and temporal noise and a hierarchical organisation at three levels (populations, genotypes within populations, and plants within genotypes). We propose a feasible one-stage spatio-temporal P-spline-based hierarchical approach to model the evolution of the genetic signal over time on a given phenotype while accounting for spatio-temporal noise. We provide the user with appealing tools that take advantage of the sparse model matrices structure to reduce computational complexity. We illustrate the performance of our method using spatio-temporal simulated data and data from the PhenoArch greenhouse platform at INRAE Montpellier. In the plant breeding context, we show that information extracted for genomic selection purposes from our fitted genotypic curves is similar to those obtained using a comparable two-stage P-spline-based approach.