SN
Susan Nilsson
Author with expertise in Hematopoietic Stem Cell Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
1,828
h-index:
47
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells

Susan Nilsson et al.Apr 22, 2005
+7
G
H
S
Abstract Although recent data suggests that osteoblasts play a key role within the hematopoietic stem cell (HSC) niche, the mechanisms underpinning this remain to be fully defined. The studies described herein examine the role in hematopoiesis of Osteopontin (Opn), a multidomain, phosphorylated glycoprotein, synthesized by osteoblasts, with well-described roles in cell adhesion, inflammatory responses, angiogenesis, and tumor metastasis. We demonstrate a previously unrecognized critical role for Opn in regulation of the physical location and proliferation of HSCs. Within marrow, Opn expression is restricted to the endosteal bone surface and contributes to HSC transmarrow migration toward the endosteal region, as demonstrated by the markedly aberrant distribution of HSCs in Opn–/– mice after transplantation. Primitive hematopoietic cells demonstrate specific adhesion to Opn in vitro via β1 integrin. Furthermore, exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn–/– mice. These data therefore provide strong evidence that Opn is an important component of the HSC niche which participates in HSC location and as a physiologic-negative regulator of HSC proliferation.
0
Citation754
0
Save
0

Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches

Susan Nilsson et al.Apr 15, 2001
J
H
S
Abstract The spatial distribution of subpopulations of hemopoietic progenitor cells following syngeneic transplantation was investigated at the single-cell level. The location of infused hemopoietic progenitor cells within the femoral bone marrow of nonablated recipients was determined by 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester labeling of cells and in situ fixation by perfusion. Analysis performed over 15 hours after infusion demonstrated that the spatial distribution of transplanted marrow cells is not a random process. Although the majority of cells enter the bone marrow from the central marrow vessels, the subsequent localization within the bone marrow varied according to their phenotype. Candidate “stem cells” demonstrated selective redistribution and were significantly enriched within the endosteal region, whereas mature terminally differentiated and lineage-committed cells selectively redistributed away from the endosteal region and were predominantly in the central marrow region. Together, these data strongly support historical evidence of the presence of endosteal hemopoietic stem cell niches.
0
Citation569
0
Save
0

Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor

Jean‐Pierre Levesque et al.Sep 1, 2001
+2
S
Y
J
Mobilized progenitor cells currently represent the most commonly used source of hematopoietic progenitor cells (HPCs) to effect hematopoietic reconstitution following myeloablative chemotherapies. Despite their widespread use, the molecular mechanisms responsible for the enforced egress of HPCs from the bone marrow (BM) into the circulation in response to mobilizing agents such as cytokines remain to be determined. Results of this study indicate that expression of vascular cell adhesion molecule-1 (VCAM-1) is strongly reduced in vivo in the BM during HPC mobilization by granulocyte colony-stimulating factor (G-CSF) and stem cell factor. Two serine proteases, namely, neutrophil elastase and cathepsin G, were identified, which cleave VCAM-1 and are released by neutrophils accumulating in the BM during the course of immobilization induced by G-CSF. The proposal is made that an essential step contributing to the mobilization of HPCs is the proteolytic cleavage of VCAM-1 expressed by BM stromal cells, an event triggered by the degranulation of neutrophils accumulating in the BM in response to the administration of G-CSF.
0
Citation491
0
Save
0

Primate-specific response of astrocytes to stroke limits peripheral macrophage infiltration

Anthony Boghdadi et al.May 10, 2020
+9
J
S
A
Reactive astrocytes play critical roles after brain injuries but their precise function in stroke is not well defined. Here, we utilized single nuclei transcriptomics to characterize astrocytes after ischemic stroke in nonhuman primate (NHP) marmoset monkey primary visual cortex. We identified 19 putative subtypes of astrocytes from injured and uninjured brain hemispheres and observed nearly complete segregation between stroke and control astrocyte clusters. We then screened for genes that might be limiting stroke recovery and discovered that one neurite-outgrowth inhibitory protein, NogoA, previously associated with oligodendrocytes but not astrocytes, was expressed in numerous reactive astrocyte subtypes. NogoA upregulation on reactive astrocytes was confirmed in vivo for NHP and human, but not observed to the same extent in rodent. Further in vivo and in vitro studies determined that NogoA mediated an anti-inflammatory response which limits deeper infiltration of peripheral macrophages from the lesion during the subacute post-stroke period. Specifically, these findings are relevant to the development of NogoA-targeting therapies shortly after ischemic stroke. Our findings have uncovered the complexity and species specificity of astrocyte responses, which need to be considered more when investigating novel therapeutics for brain injury.
0
Citation6
0
Save
0

3D-Cardiomics: A spatial transcriptional atlas of the mammalian heart

Monika Mohenska et al.Oct 3, 2019
+12
A
N
M
Abstract Understanding spatial gene expression and regulation is key to uncovering developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information, but very few utilise intuitive true-to-life three-dimensional representations to analyze and visualize results. Here we combined spatial transcriptomics with 3D modelling to represent and interrogate, transcriptome-wide, three-dimensional gene expression and location in the mouse adult heart. Our study has unveiled specific subsets of genes that display complex spatial expression in organ sub-compartments. Also, we created a web-based user interface for spatial transcriptome analysis and visualization. The application may be accessed from http://3d-cardiomics.erc.monash.edu/ .
0
Citation5
0
Save
0

The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening

Ralph Patrick et al.Jul 2, 2024
+33
J
Y
R
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
0
Citation3
0
Save