JT
Jonathan Tyrer
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(89% Open Access)
Cited by:
13,797
h-index:
72
/
i10-index:
146
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

Elizabeth Speliotes et al.Oct 10, 2010
+116
G
N
E
Ruth Loos and colleagues report results of a large genome-wide association study for body mass index. They identify 18 new loci associated with this trait, some of which map near key hypothalamic regulators of energy balance. Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ∼2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
0
Citation2,865
0
Save
0

Hundreds of variants clustered in genomic loci and biological pathways affect human height

Hana Allen et al.Sep 29, 2010
+105
M
S
H
A genome-wide association (GWA) study of more than 180,000 individuals has identified hundreds of genetic variants in at least 180 loci associated with adult human height. The loci are not clustered randomly but are enriched for genes involved in growth-related processes that influence adult height. This demonstrates that GWA studies of common human traits, and therefore of many diseases, can identify large numbers of loci that implicate potential causal genes. This very large genome-wide association study identifies hundreds of new genetic variants influencing adult height in at least 180 loci enriched for genes involved in skeletal growth defects. The results show that the likely causal gene is often located near the most strongly associated variant, that many loci have multiple independently associated variants and that associated variants are enriched for likely functional effects on genes. Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
0
Citation1,934
0
Save
0

Association analysis identifies 65 new breast cancer risk loci

Kyriaki Michailidou et al.Oct 20, 2017
+96
J
J
K
Association analysis identifies 65 new breast cancer risk loci, predicts target genes for known risk loci and demonstrates a strong overlap with somatic driver genes in breast tumours. Genome-wide association studies for breast cancer have identified common genetic variation that influences susceptibility to this disease, but much of the genetic risk remains unexplained. Doug Easton and colleagues report a genome-wide association study for breast cancer in more than 122,000 cases and 105,000 controls. The authors genotyped a subset of these cases using OncoArray, a new, custom genome-wide single-nucleotide polymorphism (SNP) array for cancer genomics. Overall, they identify 65 loci newly associated with breast cancer susceptibility, and estimate that, together with 107 previously identified breast cancer susceptibility loci, these explain about 18 per cent of the familial relative risk of breast cancer. Polygenic risk scores may be used in risk prediction models and may improve early detection and targeted prevention of the disease. Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10−8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2–5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
0
Citation1,228
0
Save
0

A breast cancer prediction model incorporating familial and personal risk factors

Jonathan Tyrer et al.Mar 23, 2004
J
S
J
Many factors determine a woman's risk of breast cancer. Some of them are genetic and relate to family history, others are based on personal factors such as reproductive history and medical history. While many papers have concentrated on subsets of these risk factors, no papers have incorporated personal risk factors with a detailed genetic analysis. There is a need to combine these factors to provide a better overall determinant of risk. The discovery of the BRCA1 and BRCA2 genes has explained some of the genetic determinants of breast cancer risk, but these genes alone do not explain all of the familial aggregation of breast cancer. We have developed a model incorporating the BRCA genes, a low penetrance gene and personal risk factors. For an individual woman her family history is used in conjuction with Bayes theorem to iteratively produce the likelihood of her carrying any genes predisposing to breast cancer, which in turn affects her likelihood of developing breast cancer. This risk was further refined based on the woman's personal history. The model has been incorporated into a computer program that gives a personalised risk estimate.
0
Citation1,178
0
Save
0

Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

Ganna Chornokur et al.Jun 19, 2015
+92
J
H
G
Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.
0
Citation897
0
Save
0

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

Nasim Mavaddat et al.Dec 13, 2018
+96
J
K
N
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs. Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
0
Citation829
0
Save
0

Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci

Fredrick Schumacher et al.Jun 8, 2018
+95
S
A
F
Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P < 5.0 × 10−8) with PrCa and one locus significantly associated with early-onset PrCa (≤55 years). Our findings include missense variants rs1800057 (odds ratio (OR) = 1.16; P = 8.2 × 10−9; G>C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10−9; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55–2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04–6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa1. A large meta-analysis combining genome-wide and custom high-density genotyping array data identifies 63 new susceptibility loci for prostate cancer, enhancing fine-mapping efforts and providing insights into the underlying biology.
0
Citation750
0
Save
0

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

Sonja Berndt et al.Apr 7, 2013
+99
R
S
S
Erik Ingelsson and colleagues report a large-scale genome-wide meta-analysis for associations to the extremes of anthropometric traits, including body mass index, height, waist-to-hip ratio and clinical obesity. They identify four loci newly associated with height and seven loci newly associated with clinical obesity and find overlap in the genetic structure and distribution of variants identified for these extremes of the trait distributions and for the general population. Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
0
Citation603
0
Save
0

Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer

Stig Bojesen et al.Mar 27, 2013
+97
S
K
S
Stig Bojesen, Georgia Chenevix-Trench, Alison Dunning and colleagues report common variants at the TERT-CLPTM1L locus associated with mean telomere length measured in whole blood. They also identify associations at this locus to breast or ovarian cancer susceptibility and report functional studies in breast and ovarian cancer tissue and cell lines. TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOGs, we analyzed ∼480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 × 10−7), lower risks for estrogen receptor (ER)-negative (P = 1.0 × 10−8) and BRCA1 mutation carrier (P = 1.1 × 10−5) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 × 10−14), higher risk of low-malignant-potential ovarian cancer (P = 1.3 × 10−15) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 × 10−12) and BRCA1 mutation carrier (P = 1.6 × 10−14) breast and invasive ovarian (P = 1.3 × 10−11) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
0
Citation517
0
Save
0

Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants

Nasim Mavaddat et al.Apr 2, 2015
+93
K
P
N
Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
0
Citation507
0
Save
Load More