Summary Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer’s disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD), which can be caused by mutations of Tau. Mutated and pathological Tau can undergo a range of post-translational modifications (PTMs) that might trigger or modulate disease pathology. Recent studies indicate that modification of wild type Tau by S mall u biquitin-like m odifier SUMO isoform 1 (SUMO1) controls Tau hyperphosphorylation and aggregation, suggesting that SUMOylation acts as a central regulator of Tau’s biochemical properties. Besides SUMO1, Tau is modified by SUMO2/3, however the consequences of this modification have not been investigated. Here, using viral approaches on primary hippocampal neurons, transgenic mice expressing mutant Tau and SUMO2, and iPSC-derived neurons from FTD patients, we evaluated whether SUMO2/3 conjugation modifies the neurodegenerative disease pathology associated with the aggregation-prone mutant Tau P301L, P301S, and R406W variants. We found that mutant forms of Tau are targets of SUMO2/3, and SUMO2/3 conjugation is neuroprotective. Importantly, expression of mutant Tau is accompanied by a significant reduction of SUMO2/3 conjugation levels, and restoring levels of SUMO2 reduces mutant Tau aggregation and phosphorylation in all model systems Furthermore, overexpression of SUMO2 restores levels of pre- and post-synaptic markers, associated with a complete rescue of the LTP and memory deficits in transgenic mice expressing mutant Tau. These findings bring to light the potential therapeutic implication of manipulating SUMO conjugation to detoxify Tau through PTM-based approaches.