BACKGROUND: Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly people. It is one of the few true ophthalmic emergencies. GCA is a heterogenous disease, symptoms and signs are variable thereby making it challenging to diagnose and often delaying diagnosis. A temporal artery biopsy is the gold standard to test for GCA, and there are currently no specific biochemical markers to categorize or aid diagnosis of the disease. We aimed to identify a less invasive method to confirm the diagnosis of GCA, as well as to ascertain clinically relevant predictive biomarkers by studying the transcriptome of purified peripheral CD4+ and CD8+ T lymphocytes in patients with GCA. METHODS AND FINDINGS: We recruited 16 patients with histological evidence of GCA at the Royal Victorian Eye and Ear Hospital (RVEEH), Melbourne, Australia, and aimed to collect blood samples at six time points: acute phase, 2-3 weeks, 6-8 weeks, 3 months, 6 months and 12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each time point through magnetic-assisted cell sorting (MACS). RNA was extracted from all 195 collected samples for subsequent RNA sequencing. The expression profiles of patients were compared to those of 16 age-matched controls. Over the 12-month study period, polynomial modelling analyses identified 179 and 4 statistically significant transcripts with altered expression profiles (FDR < 0.05) between cases and controls in CD4+ and CD8+ populations, respectively. In CD8+ cells, we identified two transcripts that remained differentially expressed after 12 months, namely SGTB, associated with neuronal apoptosis, and FCGR3A, which has been found in association with Takayasu arteritis (TA), another large vessel vasculitis. We detected genes that correlate with both symptoms and biochemical markers used in the acute setting for predicting long-term prognosis. 15 genes were shared across 3 phenotypes in CD4 and 16 across CD8 cells. In CD8, IL32 was common to 5 phenotypes: a history of Polymyalgia Rheumatica, both visual disturbance and raised neutrophils at the time of presentation, bilateral blindness and death within 12 months. Altered IL32 gene expression could provide risk evaluation of GCA diagnosis at the time of presentation and give an indication of prognosis, which may influence management. CONCLUSIONS: This is the first longitudinal gene expression study undertaken to identify robust transcriptomic biomarkers of GCA. Our results show cell type-specific transcript expression profiles, novel gene-phenotype associations, and uncover important biological pathways for this disease. These data significantly enhance the current knowledge of relevant biomarkers, their association with clinical prognostic markers, as well as potential candidates for detecting disease activity in whole blood samples. In the acute phase, the gene-phenotype relationships we have identified could provide insight to potential disease severity and as such guide us in initiating appropriate patient management.