BJ
Brandon Jew
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
26
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accurate estimation of cell composition in bulk expression through robust integration of single-cell information

Brandon Jew et al.Jun 15, 2019
+7
M
J
B
Abstract We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and single-nucleus RNA-seq (snRNA-seq) data, Bisque was able to replicate previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. Bisque requires a single-cell reference dataset that reflects physiological cell type composition and can further leverage datasets that includes both bulk and single cell measurements over the same samples for improved accuracy. We further propose an additional mode of operation that merely requires a set of known marker genes. Bisque is available as an R package at: https://github.com/cozygene/bisque .
0
Citation20
0
Save
0

Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM

Marcus Alvarez et al.Sep 30, 2019
+9
B
E
M
Abstract Single-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro , 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem .
0
Citation5
0
Save
4

Calling differential DNA methylation at cell-type resolution: addressing misconceptions and best practices

Elior Rahmani et al.Feb 15, 2021
+7
R
B
E
Abstract We benchmarked two approaches for the detection of cell-type-specific differential DNA methylation: Tensor Composition Analysis (TCA) and a regression model with interaction terms (CellDMC). Our experiments alongside rigorous mathematical explanations show that TCA is superior over CellDMC, thus resolving recent criticisms suggested by Jing et al. Following misconceptions by Jing and colleagues with modelling cell-type-specificity and the application of TCA, we further discuss best practices for performing association studies at cell-type resolution. The scripts for reproducing all of our results and figures are publicly available at github.com/cozygene/CellTypeSpecificMethylationAnalysis.
4
Citation1
0
Save
0

Preoperative predictions of in-hospital mortality using electronic medical record data

Brian Hill et al.May 25, 2018
+10
E
R
B
Background: Predicting preoperative in-hospital mortality using readily-available electronic medical record (EMR) data can aid clinicians in accurately and rapidly determining surgical risk. While previous work has shown that the American Society of Anesthesiologists (ASA) Physical Status Classification is a useful, though subjective, feature for predicting surgical outcomes, obtaining this classification requires a clinician to review the patient's medical records. Our goal here is to create an improved risk score using electronic medical records and demonstrate its utility in predicting in-hospital mortality without requiring clinician-derived ASA scores. Methods: Data from 49,513 surgical patients were used to train logistic regression, random forest, and gradient boosted tree classifiers for predicting in-hospital mortality. The features used are readily available before surgery from EMR databases. A gradient boosted tree regression model was trained to impute the ASA Physical Status Classification, and this new, imputed score was included as an additional feature to preoperatively predict in-hospital post-surgical mortality. The preoperative risk prediction was then used as an input feature to a deep neural network (DNN), along with intraoperative features, to predict postoperative in-hospital mortality risk. Performance was measured using the area under the receiver operating characteristic (ROC) curve (AUC). Results: We found that the random forest classifier (AUC 0.921, 95%CI 0.908-0.934) outperforms logistic regression (AUC 0.871, 95%CI 0.841-0.900) and gradient boosted trees (AUC 0.897, 95%CI 0.881-0.912) in predicting in-hospital post-surgical mortality. Using logistic regression, the ASA Physical Status Classification score alone had an AUC of 0.865 (95%CI 0.848-0.882). Adding preoperative features to the ASA Physical Status Classification improved the random forest AUC to 0.929 (95%CI 0.915-0.943). Using only automatically obtained preoperative features with no clinician intervention, we found that the random forest model achieved an AUC of 0.921 (95%CI 0.908-0.934). Integrating the preoperative risk prediction into the DNN for postoperative risk prediction results in an AUC of 0.924 (95%CI 0.905-0.941), and with both a preoperative and postoperative risk score for each patient, we were able to show that the mortality risk changes over time. Conclusions: Features easily extracted from EMR data can be used to preoperatively predict the risk of in-hospital post-surgical mortality in a fully automated fashion, with accuracy comparable to models trained on features that require clinical expertise. This preoperative risk score can then be compared to the postoperative risk score to show that the risk changes, and therefore should be monitored longitudinally over time.
0

Leveraging allele-specific expression to refine fine-mapping for eQTL studies

Jennifer Zou et al.Jan 31, 2018
+3
J
F
J
Many disease risk loci identified in genome-wide association studies are present in non-coding regions of the genome. It is hypothesized that these variants affect complex traits by acting as expression quantitative trait loci (eQTLs) that influence expression of nearby genes. This indicates that many causal variants for complex traits are likely to be causal variants for gene expression. Hence, identifying causal variants for gene expression is important for elucidating the genetic basis of not only gene expression but also complex traits. However, detecting causal variants is challenging due to complex genetic correlation among variants known as linkage disequilibrium (LD) and the presence of multiple causal variants within a locus. Although several fine-mapping approaches have been developed to overcome these challenges, they may produce large sets of putative causal variants when true causal variants are in high LD with many non-causal variants. In eQTL studies, there is an additional source of information that can be used to improve fine-mapping called allele-specific expression (ASE) that measures imbalance in gene expression due to different alleles. In this work, we develop a novel statistical method that leverages both ASE and eQTL information to detect causal variants that regulate gene expression. We illustrate through simulations and application to the Genotype-Tissue Expression (GTEx) dataset that our method identifies the true causal variants with higher specificity than an approach that uses only eQTL information. In the GTEx dataset, our method achieves the median reduction rate of 11% in the number of putative causal variants.
0

ForestQC: quality control on genetic variants from next-generation sequencing data using random forest

Jiajin Li et al.Oct 16, 2018
+4
L
B
J
Next-generation sequencing technology (NGS) enables discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in sequencing technology or in variant calling algorithms. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. In this paper, we present a statistical approach for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach. Our method uses information on sequencing quality such as sequencing depth, genotyping quality, and GC contents to predict whether a certain variant is likely to contain errors. To evaluate our method, we applied it to two whole-genome sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated individuals. Results indicate that our method outperforms widely used methods for performing quality control on variants such as VQSR of GATK by considerably improving the quality of variants to be included in the analysis. Our approach is also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained with sequencing quality information and the filtering approach is an effective approach to perform quality control on genetic variants from sequencing data.Author Summary Genetic disorders can be caused by many types of genetic mutations, including common and rare single nucleotide variants, structural variants, insertions and deletions. Nowadays, next generation sequencing (NGS) technology allows us to identify various genetic variants that are associated with diseases. However, variants detected by NGS might have poor sequencing quality due to biases and errors in sequencing technologies and analysis tools. Therefore, it is critical to remove variants with low quality, which could cause spurious findings in follow-up analyses. Previously, people applied either hard filters or machine learning models for variant quality control (QC), which failed to filter out those variants accurately. Here, we developed a statistical tool, ForestQC, for variant QC by combining a filtering approach and a machine learning approach. We applied ForestQC to one family-based whole genome sequencing (WGS) dataset and one general case-control WGS dataset, to evaluate our method. Results show that ForestQC outperforms widely used methods for variant QC by considerably improving the quality of variants. Also, ForestQC is very efficient and scalable to large-scale sequencing datasets. Our study indicates that combining filtering approaches and machine learning approaches enables effective variant QC.