TF
Tove Fall
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
5,281
h-index:
56
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Attributes and predictors of long COVID

Carole Sudre et al.Mar 10, 2021
Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called ‘long COVID’, are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We analyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) participants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76–4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavirus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services. Analysis of data from the COVID Symptom Study app reveals fatigue, headache, dyspnea and anosmia as key attributes of long COVID, with those experiencing five or more symptoms during the first week of being at increased risk of prolonged disease.
0

Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants

Stephen Burgess et al.Oct 4, 2016
Mendelian randomization investigations are becoming more powerful and simpler to perform, due to the increasing size and coverage of genome-wide association studies and the increasing availability of summarized data on genetic associations with risk factors and disease outcomes. However, when using multiple genetic variants from different gene regions in a Mendelian randomization analysis, it is highly implausible that all the genetic variants satisfy the instrumental variable assumptions. This means that a simple instrumental variable analysis alone should not be relied on to give a causal conclusion. In this article, we discuss a range of sensitivity analyses that will either support or question the validity of causal inference from a Mendelian randomization analysis with multiple genetic variants. We focus on sensitivity analyses of greatest practical relevance for ensuring robust causal inferences, and those that can be undertaken using summarized data. Aside from cases in which the justification of the instrumental variable assumptions is supported by strong biological understanding, a Mendelian randomization analysis in which no assessment of the robustness of the findings to violations of the instrumental variable assumptions has been made should be viewed as speculative and incomplete. In particular, Mendelian randomization investigations with large numbers of genetic variants without such sensitivity analyses should be treated with skepticism.
0
Citation1,196
0
Save
0

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

Sonja Berndt et al.Apr 7, 2013
Erik Ingelsson and colleagues report a large-scale genome-wide meta-analysis for associations to the extremes of anthropometric traits, including body mass index, height, waist-to-hip ratio and clinical obesity. They identify four loci newly associated with height and seven loci newly associated with clinical obesity and find overlap in the genetic structure and distribution of variants identified for these extremes of the trait distributions and for the general population. Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
0
Citation603
0
Save
0

Quality control and conduct of genome-wide association meta-analyses

Thomas Winkler et al.Apr 24, 2014
A protocol providing guidelines on the organizational aspects of genome-wide association meta-analyses and to implement quality control at the study file level, the meta-level across studies, and the meta-analysis output level. Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.
0
Citation453
0
Save
0

Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

Joshua Randall et al.Jun 6, 2013
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.
0
Citation406
0
Save
0

Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping

Amaury Vaysse et al.Oct 13, 2011
The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.
0
Citation362
0
Save
0

Large-scale Metabolomic Profiling Identifies Novel Biomarkers for Incident Coronary Heart Disease

Andrea Ganna et al.Dec 11, 2014
Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10−7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.
0
Citation241
0
Save
11

Mendelian randomization suggests a bidirectional, causal relationship between physical inactivity and obesity

Germán Carrasquilla et al.Jun 19, 2021
Abstract Physical inactivity is associated with excess weight gain in observational studies. However, some longitudinal studies indicate reverse causality where weight gain leads to physical inactivity. As observational studies suffer from reverse causality, it is challenging to assess the true causal directions. Here, we assess the bidirectional causality between physical inactivity and obesity by bidirectional Mendelian randomization analysis. We used results from genome-wide association studies for accelerometer-based physical activity and sedentary time in 91,105 individuals and for body mass index (BMI) in 806,834 individuals. We implemented Mendelian randomization using CAUSE method that accounts for pleiotropy and sample overlap using full genome-wide data. We also applied inverse variance-weighted, MR-Egger, weighted median, and weighted mode methods using genome-wide significant variants only. We found evidence of bidirectional causality between sedentary time and BMI: longer sedentary time was causally associated with higher BMI [beta (95%CI) from CAUSE method: 0.11 (0.02, 0.2), P=0.02], and higher BMI was causally associated with longer sedentary time (0.13 (0.08, 0.17), P=6.3.×10 -4 ). Our analyses suggest that higher moderate and vigorous physical activity are causally associated with lower BMI (moderate: -0.18 (-0.3,-0.05), P=0.006; vigorous: -0.16 (-0.24,-0.08), P=3.8×10 -4 ), but indicate that the association between higher BMI and lower levels of physical activity is due to horizontal pleiotropy. The bidirectional, causal relationship between sedentary time and BMI suggests that decreasing sedentary time is beneficial for weight management, but also that targeting obesity may lead to additional health benefits by reducing sedentary time.
11
Citation4
0
Save