DS
Dibyendu Sasmal
Author with expertise in Natural Killer Cells in Immunity
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1,341
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TCR-pMHC bond length controls TCR ligand discrimination

Dibyendu Sasmal et al.Oct 3, 2018
T-cell receptors (TCRs) detect specifically and sensitively a small number of agonist peptide-major histocompatibility complexes (pMHCs) from an ocean of structurally similar self-pMHCs to trigger antigen-specific adaptive immune responses. Despite intense efforts, the mechanism underlying TCR ligand discrimination remains a major unanswered question in immunology. Here we show that a TCR discriminates between closely related peptides by forming TCR-pMHC bonds with different lengths, which precisely control the accessibility of CD3 immunoreceptor tyrosine-based activation motifs (ITAMs) for phosphorylation. Using in situ fluorescence resonance energy transfer (FRET), we measured the intermolecular length of single TCR-pMHC bonds and the intramolecular distance of individual TCR-CD3 complexes at the membrane of live primary T cells. We found that an agonist forms a short TCR-pMHC bond to pull the otherwise sequestered CD3 off the inner leaflet of the plasma membrane, leading to full exposure of its ITAMs for strong phosphorylation. By contrast, a structurally similar weaker peptide forms a longer bond with the TCR, resulting in partial dissociation of CD3 from the membrane and weak phosphorylation. Furthermore, we found that TCR-pMHC bond length determines 2D TCR binding kinetics and affinity, T-cell calcium signaling and T-cell proliferation, governing the entire process of signal reception, transduction and regulation. Thus, our data reveal the fundamental mechanism by which a TCR deciphers the structural differences between foreign antigens and self-peptides via TCR-pMHC bond length to initiate different TCR signaling for ligand discrimination.
0

Drug Binding to Partially Unfolded Serum Albumin: Insights into Nonsteroidal Anti-Inflammatory Drug Naproxen–BSA Interactions from Spectroscopic and MD Simulation Studies

Debasish Rout et al.Sep 24, 2024
Understanding the binding details of a small-molecule drug to a protein in its partially unfolded state is important for drug delivery as it provides insight into the overall drug-binding ability of the protein, even when the majority of binding pockets in its unfolded state are impaired. The interaction of partially unfolded proteins with drugs remains poorly understood due to a lack of structural information on proteins in their partially unfolded states. Here, we studied the interaction between serum albumin (bovine serum albumin (BSA) as a model system), an abundant protein in blood serum that is an effective carrier for numerous known drugs, and a nonsteroidal anti-inflammatory drug (NSAID) naproxen (NPS) using various spectroscopic and computational methods. Molecular dynamics simulations starting from the drug-unbound state and performed at physiological and higher temperatures revealed novel hydrophobic sites on the BSA surface. We analyzed the BSA-NPS interaction in the presence and absence of the cationic organized assembly CTAB and two oligosaccharides (β-CD and 2-HP-β-CD) at different excitation wavelengths. The solvation dynamics of BSA under NPS-bound conditions became ∼4.6% faster. Oligosaccharides were found to increase the solubility of NPS by providing a hydrophobic environment for the formation of inclusion complexes through host-guest interactions. These findings provide a comprehensive overview and uncover the binding model and mechanism of interaction of NPS with BSA, revealing hydrophobic and electrostatic interactions and hydrogen bonds required for BSA to bind NPS at these noncanonical sites. The molecular-level understanding of the binding mechanism of commonly used NSAIDs like NPS with partially unfolded BSA will be useful in designing pharmaceutically important molecules with efficient loading and delivery properties.