CL
Chunyi Li
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
96
h-index:
46
/
i10-index:
210
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor

Zunpeng Liu et al.Feb 1, 2022
+24
L
W
Z
Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.
2
Citation58
1
Save
5

A population of stem cells with strong regenerative potential discovered in deer antlers

Tao Qin et al.Feb 24, 2023
+19
Z
G
T
The annual regrowth of deer antlers provides a valuable model for studying organ regeneration in mammals. We describe a single-cell atlas of antler regrowth. The earliest-stage antler initiators were mesenchymal cells that express the paired related homeobox 1 gene (PRRX1+ mesenchymal cells). We also identified a population of "antler blastema progenitor cells" (ABPCs) that developed from the PRRX1+ mesenchymal cells and directed the antler regeneration process. Cross-species comparisons identified ABPCs in several mammalian blastema. In vivo and in vitro ABPCs displayed strong self-renewal ability and could generate osteochondral lineage cells. Last, we observed a spatially well-structured pattern of cellular and gene expression in antler growth center during the peak growth stage, revealing the cellular mechanisms involved in rapid antler elongation.
5
Citation33
1
Save
1

The First High-Quality Reference Genome of Sika Deer Provides Insights for High-Tannin Adaptation

Xiumei Xing et al.May 14, 2021
+53
T
C
X
Abstract Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement in the elucidation of the genomics of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of UGT genes in a subfamily. The first chromosome-level assembly and genetic characterization of the tolerance toa highly toxic diet suggest that the sika deer genome will serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.
1
Citation5
0
Save
0

Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ regeneration

Hengxing Ba et al.Feb 11, 2018
+3
W
D
H
Abstract Antler regeneration, a stem cell-based epimorphic process, has potential as a valuable model for regenerative medicine. A pool of antler stem cells (ASCs) for antler development is located in the antlerogenic periosteum (AP). However, whether this ASC pool is homogenous or heterogeneous has not been fully evaluated. In this study, we produced a comprehensive transcriptome dataset at the single-cell level for the ASCs based on the 10x Genomics platform (scRNA-seq). A total of 4,565 ASCs were sequenced and classified into a large cell cluster, indicating that the ASCs resident in the AP are likely to be a homogeneous population. The scRNA-seq data revealed that tumor-related genes were highly expressed in these homogeneous ASCs: i.e. TIMP1, TMSB10, LGALS1, FTH1, VIM, LOC110126017 and S100A4. Results of screening for stem cell markers suggest that the ASCs may be considered as a special type of stem cell between embryonic (CD9) and adult (CD29, CD90, NPM1 and VIM) stem cells. Our results provide the first comprehensive transcriptome analysis at the single-cell level for the ASCs, and identified only one major cell type resident in the AP and some key stem cell genes, which may hold the key to why antlers, the unique mammalian organ, can fully regenerate once lost.