Purpose To quantify the multi-institutional and multiobserver variability of target and organ-at-risk (OAR) delineation for breast-cancer radiotherapy (RT) and its dosimetric impact as the first step of a Radiation Therapy Oncology Group effort to establish a breast cancer atlas. Methods and Materials Nine radiation oncologists specializing in breast RT from eight institutions independently delineated targets (e.g., lumpectomy cavity, boost planning target volume, breast, supraclavicular, axillary and internal mammary nodes, chest wall) and OARs (e.g., heart, lung) on the same CT images of three representative breast cancer patients. Interobserver differences in structure delineation were quantified regarding volume, distance between centers of mass, percent overlap, and average surface distance. Mean, median, and standard deviation for these quantities were calculated for all possible combinations. To assess the impact of these variations on treatment planning, representative dosimetric plans based on observer-specific contours were generated. Results Variability in contouring the targets and OARs between the institutions and observers was substantial. Structure overlaps were as low as 10%, and volume variations had standard deviations up to 60%. The large variability was related both to differences in opinion regarding target and OAR boundaries and approach to incorporation of setup uncertainty and dosimetric limitations in target delineation. These interobserver differences result in substantial variations in dosimetric planning for breast RT. Conclusions Differences in target and OAR delineation for breast irradiation between institutions/observers appear to be clinically and dosimetrically significant. A systematic consensus is highly desirable, particularly in the era of intensity-modulated and image-guided RT. To quantify the multi-institutional and multiobserver variability of target and organ-at-risk (OAR) delineation for breast-cancer radiotherapy (RT) and its dosimetric impact as the first step of a Radiation Therapy Oncology Group effort to establish a breast cancer atlas. Nine radiation oncologists specializing in breast RT from eight institutions independently delineated targets (e.g., lumpectomy cavity, boost planning target volume, breast, supraclavicular, axillary and internal mammary nodes, chest wall) and OARs (e.g., heart, lung) on the same CT images of three representative breast cancer patients. Interobserver differences in structure delineation were quantified regarding volume, distance between centers of mass, percent overlap, and average surface distance. Mean, median, and standard deviation for these quantities were calculated for all possible combinations. To assess the impact of these variations on treatment planning, representative dosimetric plans based on observer-specific contours were generated. Variability in contouring the targets and OARs between the institutions and observers was substantial. Structure overlaps were as low as 10%, and volume variations had standard deviations up to 60%. The large variability was related both to differences in opinion regarding target and OAR boundaries and approach to incorporation of setup uncertainty and dosimetric limitations in target delineation. These interobserver differences result in substantial variations in dosimetric planning for breast RT. Differences in target and OAR delineation for breast irradiation between institutions/observers appear to be clinically and dosimetrically significant. A systematic consensus is highly desirable, particularly in the era of intensity-modulated and image-guided RT.