NL
Nathan Lawlor
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Jackson Laboratory, Sema4 (United States), Farmington Community Library
+ 2 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
3
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tet2 Controls β cells Responses to Inflammation in Type 1 Diabetes

Jinxiu Rui et al.Jun 5, 2024
+9
G
S
J
Abstract β cells may participate and contribute to their own demise during Type 1 diabetes (T1D). We identified a novel role of Tet2 in regulating immune killing of β cells. Tet2 is induced in murine and human β cells with inflammation but its expression is reduced in surviving β cells. Tet2-KO mice that receive WT bone marrow transplants develop insulitis but not diabetes and islet infiltrates do not eliminate β cells even though immune cells from the mice can transfer diabetes to NOD/ scid recipients. Tet2-KO β cells show reduced expression of inflammatory genes, associated with closed transcription factor binding sites. Tet2-KO recipients are protected from transfer of disease by diabetogenic immune cells. We conclude that Tet2 regulates pathologic interactions between β cells and immune cells and controls intrinsic protective pathways. Modulating TET2 may enable survival of β cells or their replacements in the setting of pathologic immune cells.
0
Citation1
0
Save
12

A read count-based method to detect multiplets and their cellular origins from snATAC-seq data

Asa Thibodeau et al.Oct 24, 2023
+8
N
A
A
ABSTRACT Similar to other droplet-based single cell assays, single nucleus ATAC-seq (snATAC-seq) data harbor multiplets that confound downstream analyses. Detecting multiplets in snATAC-seq data is particularly challenging due to its sparsity and trinary nature (0 reads: closed chromatin, 1: open in one allele, 2: open in both alleles), yet offers a unique opportunity to infer multiplets when >2 uniquely aligned reads are observed at multiple loci. Here, we implemented the first read count-based multiplet detection method, ATAC-DoubletDetector, that detects multiplets independently of cell-type. Using PBMC and pancreatic islet datasets, ATAC-DoubletDetector captured simulated heterotypic multiplets (different cell-types) with ∼0.60 recall, showing ∼24% improvement over state of the art. ATAC-DoubletDetector detected homotypic multiplets with ∼0.61 recall, representing the first method to detect multiplets originating from the same cell type. Using our novel clustering-based algorithm, multiplets were annotated to their cellular origins with ∼85% accuracy. Application of ATAC-DoubletDetector will improve downstream analysis of snATAC-seq.
12
Citation1
0
Save
0

Chromatin accessibility profiling uncovers genetic- and T2D disease state-associated changes in cis-regulatory element use in human islets

Shubham Khetan et al.May 7, 2020
+4
A
R
S
Genetic and environmental factors both contribute to islet dysfunction and failure, resulting in type 2 diabetes (T2D). The islet epigenome integrates these cues and can be remodeled by genetic and environmental variation. However, our knowledge of how genetic variants and T2D disease state alter human islet chromatin landscape and cis-regulatory element (RE) use is lacking. To fill this gap, we profiled and analyzed human islet chromatin accessibility maps from 19 genotyped individuals (5 with T2D) using ATAC-seq technology. Chromatin accessibility quantitative trait locus (caQTL) analyses identified 3001 sequence variants (FDR<10%) altering putative cis-RE use/activity. Islet caQTL were significantly and specifically enriched in islet stretch enhancers and islet-specific transcription factor binding motifs, such as FOXA2, NKX6.1, RFX5/6 and PDX1. Importantly, these analyses identified putative functional single nucleotide variants (SNVs) in 13 T2D-associated GWAS loci, including those previously associated with altered ZMIZ1, MTNR1B, RNF6, and ADCY5 islet expression, and linked the risk alleles to increased (n=8) or decreased (n=5) islet chromatin accessibility. Luciferase reporter assays confirmed allelic differences in cis-RE activity for 5/9 caQTL sequences tested, including a T2D-associated SNV in the IL20RA locus. Comparison of T2D and non-diabetic islets revealed 1882 open chromatin sites exhibiting T2D-associated chromatin accessibility changes (FDR<10%). Together, this study provides new insights into genetic variant and T2D disease state effects on islet cis-RE use and serves as an important resource to identify putative functional variants in T2D- and islet dysfunction-associated GWAS loci and link their risk allele to in vivo loss or gain of chromatin accessibility.
27

Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues

Gemma Pearson et al.Oct 24, 2023
+26
N
E
G
ABSTRACT Mitochondrial damage is a hallmark of metabolic diseases, including diabetes and metabolic dysfunction-associated steatotic liver disease, yet the consequences of impaired mitochondria in metabolic tissues are often unclear. Here, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity across multiple metabolic tissues. Surprisingly, we demonstrate that defects in the mitochondrial quality control machinery, which we observe in pancreatic β cells of humans with type 2 diabetes, cause reductions of β cell mass due to dedifferentiation, rather than apoptosis. Utilizing transcriptomic profiling, lineage tracing, and assessments of chromatin accessibility, we find that targeted deficiency anywhere in the mitochondrial quality control pathway ( e.g. , genome integrity, dynamics, or turnover) activate the mitochondrial integrated stress response and promote cellular immaturity in β cells, hepatocytes, and brown adipocytes. Intriguingly, pharmacologic blockade of mitochondrial retrograde signaling in vivo restores β cell mass and identity to ameliorate hyperglycemia following mitochondrial damage. Thus, we observe that a shared mitochondrial retrograde response controls cellular identity across metabolic tissues and may be a promising target to treat or prevent metabolic disorders.
0

BiFET: A Bias-free Transcription Factor Footprint Enrichment Test

Ahrim Youn et al.May 7, 2020
+2
N
E
A
Transcription factor (TF) footprinting uncovers putative protein-DNA binding via combined analyses of chromatin accessibility patterns and their underlying TF sequence motifs. TF footprints are frequently used to identify TFs that regulate activities of cell/condition-specific genomic regions (target loci) in comparison to control regions (background loci) using standard enrichment tests. However, there is a strong association between the chromatin accessibility level and the GC content of a locus and the number and types of TF footprints that can be detected at this site. Traditional enrichment tests (e.g., hypergeometric) do not account for this bias and inflate false positive associations. Therefore, we developed a novel method, Bias-free Footprint Enrichment Test (BiFET), that corrects for the biases arising from the differences in chromatin accessibility levels and GC contents between target and background loci in footprint enrichment analyses. We applied BiFET on TF footprint calls obtained from human EndoC ATAC-seq samples using three different algorithms (CENTIPEDE, HINT-BC, and PIQ) and showed ability of BiFET to increase power and reduce false positive rate when compared to hypergeometric test. Furthermore, we used BiFET to study TF footprints from human PBMC and pancreatic islet ATAC-seq samples to show its utility to identify putative TFs associated with cell-type-specific loci.
0

EndoC-βH1 multi-genomic profiling defines gene regulatory programs governing human pancreatic β cell identity and function

Nathan Lawlor et al.May 7, 2020
+24
P
E
N
EndoC-βH1 is emerging as a critical human beta cell model to study the genetic and environmental etiologies of beta cell function, especially in the context of diabetes. Comprehensive knowledge of its molecular landscape is lacking yet required to fully take advantage of this model. Here, we report extensive chromosomal (spectral karyotyping), genetic (genotyping), epigenetic (ChIP-seq, ATAC-seq), chromatin interaction (Hi-C, Pol2 ChIA-PET), and transcriptomic (RNA-seq, miRNA-seq) maps of this cell model. Integrated analyses of these maps define known (e.g., PDX1, ISL1) and putative (e.g., PCSK1, mir-375) beta cell-specific chromatin interactions and transcriptional cis-regulatory networks, and identify allelic effects on cis-regulatory element use and expression. Importantly, comparative analyses with maps generated in primary human islets/beta cells indicate substantial preservation of chromatin looping, but also highlight chromosomal heterogeneity and fetal genomic signatures in EndoC-βH1. Together, these maps, and an interactive web application we have created for their exploration, provide important tools for the broad community in the design and success of experiments to probe and manipulate the genetic programs governing beta cell identity and (dys)function in diabetes.