AS
Alba Sanchis-Juan
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
393
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

Keren Carss et al.Dec 29, 2016
+87
M
G
K
Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.
0
Citation383
0
Save
0

Genome Sequencing for Diagnosing Rare Diseases

Monica Wojcik et al.Jun 6, 2024
+87
S
S
M
Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined.
0
Citation6
0
Save
0

A common flanking variant is associated with enhanced stability of the FGF14-SCA27B repeat locus

David Pellerin et al.Jun 27, 2024
+126
M
G
D
0
Citation2
0
Save
0

Expanding the genetics and phenotypes of ocular congenital cranial dysinnervation disorders

Julie Jurgens et al.Jul 1, 2024
+97
W
B
J
Purpose:To identify genetic etiologies and genotype/phenotype associations for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs). Methods:We coupled phenotyping with exome or genome sequencing of 467 probands (550 affected and 1108 total individuals) with genetically unsolved oCCDDs, integrating analyses of pedigrees, human and animal model phenotypes, and de novo variants to identify rare candidate single nucleotide variants, insertion/deletions, and structural variants disrupting protein-coding regions.Prioritized variants were classified for pathogenicity and evaluated for genotype/phenotype correlations. Results:Analyses elucidated phenotypic subgroups, identified pathogenic/likely pathogenic variant(s) in 43/467 probands (9.2%), and prioritized variants of uncertain significance in 70/467 additional probands (15.0%).These included known and novel variants in established oCCDD genes, genes associated with syndromes that sometimes include oCCDDs (e.g., MYH10, KIF21B, TGFBR2, TUBB6), genes that fit the syndromic component of the phenotype but had no prior oCCDD association (e.g., CDK13, TGFB2), genes with no reported association with oCCDDs or the syndromic phenotypes (e.g., TUBA4A, KIF5C, CTNNA1, KLB, FGF21), and genes associated with oCCDD phenocopies that had resulted in misdiagnoses. Conclusion:This study suggests that unsolved oCCDDs are clinically and genetically heterogeneous disorders often overlapping other Mendelian conditions and nominates many candidates for future replication and functional studies.
0
Citation2
0
Save
0

Complex Structural Variants Resolved by Short-Read and Long-Read Whole Genome Sequencing in Mendelian Disorders

Alba Sanchis-Juan et al.Mar 14, 2018
+18
W
T
A
Complex structural variants (cxSVs) are genomic rearrangements comprising multiple structural variants, typically involving three or more breakpoint junctions. They contribute to human genomic variation and can cause Mendelian disease, however they are not typically considered during genetic testing. Here, we investigate the role of cxSVs in Mendelian disease using short-read whole genome sequencing (WGS) data from 1,324 individuals with neurodevelopmental or retinal disorders from the NIHR BioResource project. We present four cases of individuals with a cxSV affecting Mendelian disease-associated genes. Three of the cxSVs are pathogenic: a de novo duplication-inversion-inversion-deletion affecting ARID1B in an individual with Coffin-Siris syndrome, a deletion-inversion-duplication affecting HNRNPU in an individual with intellectual disability and seizures, and a homozygous deletion-inversion-deletion affecting CEP78 in an individual with cone-rod dystrophy. Additionally, we identified a de novo duplication-inversion-duplication overlapping CDKL5 in an individual with neonatal hypoxic-ischaemic encephalopathy. Long-read sequencing technology used to resolve the breakpoints demonstrated the presence of both a disrupted and an intact copy of CDKL5 on the same allele; therefore, it was classified as a variant of uncertain significance. Analysis of sequence flanking all breakpoint junctions in all the cxSVs revealed both microhomology and longer repetitive sequences, suggesting both replication and homology based processes. Accurate resolution of cxSVs is essential for clinical interpretation, and here we demonstrate that long-read WGS is a powerful technology by which to achieve this. Our results show cxSVs are an important although rare cause of Mendelian disease, and we therefore recommend their consideration during research and clinical investigations.