SM
Solomon Musani
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
353
h-index:
52
/
i10-index:
121
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The landscape of recombination in African Americans

Anjali Hinch et al.Jul 20, 2011
Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution. Genetic maps measure the probability of crossovers at each position in a genome and are valuable tools for the study of variation in populations. A genetic map has now been constructed using data from 18,000 African American individuals. Comparison with European genetic maps reveals more than 2,000 recombination hot spots that are active in people of West African ancestry but inactive in most Europeans. The probability of crossover at these hot spots is controlled at the PRDM9 locus. A 17-base-pair DNA sequence motif is enriched at these hot spots, a source of risk for disease-causing genomic rearrangements.
0
Citation340
0
Save
0

Smoking-by-genotype interaction in type 2 diabetes risk and fasting glucose

Peitao Wu et al.May 7, 2020
Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.
0
Citation13
0
Save
0

Multi-ancestry analysis of gene-sleep interactions in 126,926 individuals identifies multiple novel blood lipid loci that contribute to our understanding of sleep-associated adverse blood lipid profile

Raymond Noordam et al.Feb 25, 2019
Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To provide new insights in the biology of sleep-associated adverse lipid profile, we conducted multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identified 49 novel lipid loci, and 10 additional novel lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identified new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The novel gene-sleep interactions had a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explained 4.25% of the variance in triglyceride concentration. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.
0

Genome-wide association study of asthma in individuals of African ancestry reveals novel asthma susceptibility loci

Michelle Daya et al.Mar 2, 2017
BACKGROUND: Asthma is a complex disease with striking disparities across racial and ethnic groups, which may be partly attributable to genetic factors. One of the main goals of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to discover genes conferring risk to asthma in populations of African descent. METHODS: We performed a genome-wide meta-analysis of asthma across 11 CAAPA datasets (4,827 asthma cases and 5,397 controls), genotyped on the African Diaspora Power Chip (ADPC) and including existing GWAS array data. The genotype data were imputed up to a whole genome sequence reference panel from n=880 African ancestry individuals for a total of 61,904,576 SNPs. Statistical models appropriate to each study design were used to test for association, and results were combined using the weighted Z-score method. We also used admixture mapping as a complementary approach to identify loci involved in asthma pathogenesis in subjects of African ancestry. RESULTS: SNPs rs787160 and rs17834780 on chromosome 2q22·3 were significantly associated with asthma (p=6 ·57×10−9 and 2·97 × 10−8 respectively). These SNPs lie in the intergenic region between the Rho GTPase Activating Protein 15 (ARHGAP15) and Glycosyltransferase Like Domain Containing 1 (GTDC1) genes. Four low frequency variants on chromosome 1q21.3, which may be involved in the "atopic march" and which are not polymorphic in Europeans, also showed evidence for association with asthma (1·18 × 10−6 ≤p≤3·06 ×10 −6). SNP rs11264909 on chromosome 1q23·1, close to a region previously identified by the EVE asthma meta-analysis as having a putative African ancestry specific effect, only showed differences in counts in subjects homozygous for alleles of African ancestry. Admixture mapping also identified a significantly associated region on chromosome 6q23·2, which includes the Transcription Factor 21 (TCF21) gene, previously shown to be differentially expressed in bronchial tissues of asthmatics and non-asthmatics. CONCLUSIONS: We have identified a number of novel asthma association signals warranting further investigation.
0

Sequencing and Imputation in GWAS: Cost-Effective Strategies to Increase Power and Genomic Coverage Across Diverse Populations

Corbin Quick et al.Feb 13, 2019
A key aim for current genome-wide association studies (GWAS) is to interrogate the full spectrum of genetic variation underlying human traits, including rare variants, across populations. Deep whole-genome sequencing is the gold standard to capture the full spectrum of genetic variation, but remains prohibitively expensive for large samples. Array genotyping interrogates a sparser set of variants, which can be used as a scaffold for genotype imputation to capture variation across a wider set of variants. However, imputation coverage and accuracy depend crucially on the reference panel size and genetic distance from the target population. Here, we consider a strategy in which a subset of study participants is sequenced and the rest array-genotyped and imputed using a reference panel that comprises the sequenced study participants and individuals from an external reference panel. We systematically assess how imputation quality and statistical power for association depend on the number of individuals sequenced and included in the reference panel for two admixed populations (African and Latino Americans) and two European population isolates (Sardinians and Finns). We develop a framework to identify powerful and cost-effective GWAS designs in these populations given current sequencing and array genotyping costs. For populations that are well-represented in current reference panels, we find that array genotyping alone is cost-effective and well-powered to detect both common- and rare-variant associations. For poorly represented populations, we find that sequencing a subset of study participants to improve imputation is often more cost-effective than array genotyping alone, and can substantially increase genomic coverage and power.
0

A Fully-Adjusted Two-Stage Procedure for Rank Normalization in Genetic Association Studies

Tamar Sofer et al.Jun 12, 2018
When testing genotype-phenotype associations using linear regression, departure of the trait distribution from normality can impact both Type I error rate control and statistical power, with worse consequences for rarer variants. While it has been shown that applying a rank-normalization transformation to trait values before testing may improve these statistical properties, the factor driving them is not the trait distribution itself, but its residual distribution after regression on both covariates and genotype. Because genotype is expected to have a small effect (if any) investigators now routinely use a two-stage method, in which they first regress the trait on covariates, obtain residuals, rank-normalize them, and then secondly use the rank-normalized residuals in association analysis with the genotypes. Potential confounding signals are assumed to be removed at the first stage, so in practice no further adjustment is done in the second stage. Here, we show that this widely-used approach can lead to tests with undesirable statistical properties, due to both a combination of a mis-specified mean-variance relationship, and remaining covariate associations between the rank-normalized residuals and genotypes. We demonstrate these properties theoretically, and also in applications to genome-wide and whole-genome sequencing association studies. We further propose and evaluate an alternative fully-adjusted two-stage approach that adjusts for covariates both when residuals are obtained, and in the subsequent association test. This method can reduce excess Type I errors and improve statistical power.
0

Robust, flexible, and scalable tests for Hardy-Weinberg Equilibrium across diverse ancestries

Alan Kwong et al.Jun 24, 2020
ABSTRACT Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ 2 test and the exact test) have long been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in datasets comprised of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE testing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for population structure and genotype uncertainty, and evaluate the impact of population heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods using simulated and real sequence datasets. Our results demonstrate that ignoring population structure or genotype uncertainty in HWE tests can inflate false positive rates by many orders of magnitude. Our evaluations demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently amongst the best across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth .
6

Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure

Heming Wang et al.May 31, 2020
Abstract Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups using 1 degree of freedom (1df) interaction and 2df joint tests. Primary multi-ancestry analyses in 62,969 individuals in stage 1 identified 3 novel loci that were replicated in an additional 59,296 individuals in stage 2, including rs7955964 ( FIGNL2/ANKRD33 ) showing significant 1df interactions with long sleep duration and rs73493041 ( SNORA26/C9orf170 ) and rs10406644 ( KCTD15/LSM14A ) showing significant 1df interactions with short sleep duration (P int < 5×10 −8 ). Secondary ancestry-specific two-stage analyses and combined stage 1 and 2 analyses additionally identified 23 novel loci that need external replication, including 3 and 5 loci showing significant 1df interactions with long and short sleep duration, respectively (P int < 5×10 −8 ). Multiple genes mapped to our 26 novel loci have known functions in sleep-wake regulation, nervous and cardiometabolic systems. We also identified new gene by long sleep interactions near five known BP loci (≤1Mb) including NME7, FAM208A, MKLN1, CEP164 , and RGL3/ELAVL3 (P int < 5×10 −8 ). This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
0

Loss-of-function genomic variants with impact on liver-related blood traits highlight potential therapeutic targets for cardiovascular disease

Jonas Nielsen et al.Apr 2, 2019
Cardiovascular diseases (CVD), and in particular cerebrovascular and ischemic heart diseases, are leading causes of death globally. Lowering circulating lipids is an important treatment strategy to reduce risk. However, some pharmaceutical mechanisms of reducing CVD may increase risk of fatty liver disease or other metabolic disorders. To identify potential novel therapeutic targets, which may reduce risk of CVD without increasing risk of metabolic disease, we focused on the simultaneous evaluation of quantitative traits related to liver function and CVD. Using a combination of low-coverage (5x) whole-genome sequencing and targeted genotyping, deep genotype imputation based on the TOPMed reference pane, and genome-wide association study (GWAS) meta-analysis, we analyzed 12 liver-related blood traits (including liver enzymes, blood lipids, and markers of iron metabolism) in up to 203,476 people from three population-based cohorts of different ancestries. We identified 88 likely causal protein-altering variants that were associated with one or more liver-related blood traits. We identified several loss-of-function (LoF) variants reducing low-density lipoprotein cholesterol (LDL-C) or risk of CVD without increased risk of liver disease or diabetes, including variants in known lipid genes (e.g. APOB, LPL). A novel LoF variant, ZNF529:p.K405X, was associated with decreased levels of LDL-C (P=1.3x10-8) but demonstrated no association with liver enzymes or non-fasting blood glucose levels. Silencing of ZNF529 in human hepatocytes resulted in upregulation of LDL receptor (LDLR) and increased LDL-C uptake in the cells, suggesting that inhibition of ZNF529 or its gene product could be used for treating hypercholesterolemia and hence reduce the risk of CVD. Taken together, we demonstrate that simultaneous consideration of multiple phenotypes and a focus on rare protein-altering variants may identify promising therapeutic targets.