MS
Michael Schuler
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

High-resolution transcriptomic and epigenetic profiling identifies novel regulators of COPD phenotypes in human lung fibroblasts

Uwe Schwartz et al.Mar 29, 2022
Abstract Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering the environmental cause of COPD (e.g., cigarette smoke) and disease phenotypes, including stem-cell senescence and impaired differentiation, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) isolated from distal parenchyma of ex-smoker controls and COPD patients, with both mild and severe disease. The epigenetic landscape is markedly changed in lung fibroblasts across COPD stages, with DNA methylation changes occurring predominantly in regulatory regions, including promoters and enhancers. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Notably, we identified epigenetic and transcriptional dysregulation already in mild COPD patients, providing unique insights into early disease. Integration of profiling data identified 110 candidate regulators of disease phenotypes, including epigenetic factors. Using phenotypic screens, we verified the regulator capacity of multiple candidates and linked them to repair processes in the human lung. Our study provides first integrative high-resolution epigenetic and transcriptomic maps of human lung fibroblasts across stages of COPD. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic respiratory diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.
13
Citation1
0
Save
0

Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in an iPSC-derived air-liquid interface model

Eva Schruf et al.Nov 4, 2019
An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung, herein termed bronchiolization, is a process often observed in patients suffering from idiopathic pulmonary fibrosis (IPF), a fatal disease characterized by progressive fibrotic lung remodeling. However, the origin of this dysfunctional epithelium remains unknown. In this study, we aimed to investigate the effects of a pro-fibrotic milieu, similar to that found in an IPF lung, on human alveolar epithelial progenitor cell differentiation. We developed an induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar type II (ATII)-like cell differentiation and stimulated it with an IPF-relevant cocktail (IPF-RC), composed of cytokines previously reported to be elevated in IPF lungs. iPSC-derived cultures express ATII markers and contain lamellar body-like structures. Stimulation with IPF-RC during the last two weeks of differentiation increases secretion of IPF biomarkers. Transcriptome analysis of IPF-RC treated cultures reveals significant overlap with human IPF data and enrichment of transcripts associated with extracellular matrix organization. IPF-RC stimulation further impairs ATII differentiation by driving a shift towards an airway epithelial-like expression signature. In conclusion, we show for the first time, the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization in vitro. Our findings reveal how aberrant alveolar epithelial progenitor cell differentiation in a pro-fibrotic environment could contribute to alveolar bronchiolization in the distal IPF lung.
3

Screening the human druggable genome identifies ABHD17B as an anti-fibrotic target in hepatic stellate cells

Wenyang Li et al.Aug 7, 2023
Background & Aims Chronic liver injury leads to activation of hepatic stellate cells (HSCs), which transdifferentiate into HSC myofibroblasts and produce the extracellular matrix (ECM) that forms the fibrotic scar. While the progression of fibrosis is understood to be the cause of end stage liver disease, there are currently no approved therapies directed at interfering with the activity of HSC myofibroblasts. Methods We performed a high-throughput small interfering RNA (siRNA) screen in primary human HSC myofibroblasts targeting RNAs from >9,500 genes to identify those that promote the fibrotic phenotype of HSCs. The screen identified ABHD17B (Abhydrolase domain containing 17B, depalmitoylase), which was evaluated through loss-of-function studies in multiple primary human HSC lines. Structural analysis was performed to identify key amino acids in the hydrolase pocket of ABHD17B, and depalmitoylase inhibitors were evaluated. Protein partners were identified by mass spectrometry (MS), and Abhd17b−/− mice were challenged with carbon tetrachloride (CCl 4 ) as a model of chronic liver injury. Results Depletion of ABHD17B promotes the inactivation of HSCs, characterized by reduced COL1A1 and ACTA2 expression and accumulation of lipid droplets. RNA-seq and MS analysis also indicated a broader impact on ECM production and cytoskeletal organization. Mice deficient in Abhd17b are viable, demonstrate normal liver histology, and are protected from fibrosis in the setting of in vivo liver injury. While ABHD17B is a depalmitoylase, inhibiting this function alone is not sufficient to affect the fibrotic activity of HSCs. Conclusions ABHD17B promotes fibrosis through pathways independent of depalmitoylation that include regulating expression of COL1A1 and other ECM genes and interacting with proteins involved in cytoskeletal organization, contractility, and adhesion. Targeting ABHD17B may have potential as an antifibrotic therapy.
6

Complementary CRISPR screen highlights the contrasting role of membrane-bound and soluble ICAM-1 in regulating antigen specific tumor cell killing by cytotoxic T cells

Ann-Kathrin Mattes et al.Aug 27, 2022
Abstract Cytotoxic CD8+ T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function. CRISPRa and CRISPR KO screens uncovered 186 and 704 hits respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon-γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered new genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.