CR
Charles Resch
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
1,680
h-index:
36
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

Robert Anderson et al.Oct 1, 2003
ABSTRACT The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 μM in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.
0
Paper
Citation877
0
Save
0

Sorption of divalent metals on calcite

John Zachara et al.Jun 1, 1991
The sorption of seven divalent metals (Ba, Sr, Cd, Mn, Zn, Co, and Ni) was measured on calcite over a large initial metal (Me) concentration range (10−8 to 10−4 mol/L) in constant ionic strength (I = 0.1), equilibrium CaCO3(s)-CaCO3(aq) suspensions that varied in pH. At higher initial Me concentrations (10−5 to 1−4 mol/L) geochemical calculations indicated that the equilibrium solutions were saturated with discrete solid phases of the sorbates: CdCO3(s), MnCO3(s), Zn5(OH)6(CO3)2(s), Co(OH)2(s), and Ni(OH)2(s), implying that aqueous concentrations were governed by solubility. However, significant sorption of all the metals except for Ba and Sr was observed at aqueous concentrations below saturation with Me-solid phases. Divalent metal ion sorption was dependent on aqueous Ca concentration, and the following selectivity sequence was observed: Cd > Zn ≥ Mn > Co > Ni > Ba = Sr. The metals varied in their sorption reversibility, which was correlated with the single-ion hydration energies of the metal sorbates. The strongly hydrated metals (Zn, Co, and Ni) were most desorbable. A sorption model that included aqueous speciation and Me2+-Ca2+ exchange on cation-specific surface sites was developed that described most of the data well. The chemical nature of the surface complex used in this model was unspecified and could represent either a hydrated or dehydrated surface complex, or a surface precipitate. A single exchange constant for Cd, Mn, Co, and Ni could describe the sorption of that metal over a wide range in pH, Ca concentration, and surface concentration. Zinc, however, exhibited nonlinear sorption behavior and required exchange constants that varied with surface coverage. Our data suggested that (i) Cd and Mn dehydrate soon after their adsorption to calcite and form a phase that behaves like a surface precipitate, and (ii) Zn, Co, and Ni form surface complexes that remain hydrated until the ions are incorporated into the structure by recrystallization.
0

Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

James Stegen et al.Apr 7, 2016
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater–surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater–surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. Groundwater-surface water mixing zones link critical ecosystem domains, but attendant microbe-biogeochemistry-hydrology interactions are poorly known. Here, the authors show that groundwater-surface water mixing stimulates respiration, alters carbon composition, and shifts the ecology from stochastic to deterministic.
0
Paper
Citation328
0
Save
0

Carbon inputs from riparian vegetation limit oxidation of physically-bound organic carbon via biochemical and thermodynamic processes

Emily Graham et al.Feb 2, 2017
In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultra-high resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and -- in direct conflict with the priming concept -- that inputs of water-soluble and thermodynamically favorable terrestrial OC protects bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC, but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically-bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.
0
Paper
Citation5
0
Save
9

Using Community Science to Reveal the Global Chemogeography of River Metabolomes

Vanessa Garayburu‐Caruso et al.Nov 4, 2020
Abstract River corridor metabolomes reflect organic matter (OM) processing that drives aquatic biogeochemical cycles. Recent work highlights the power of ultrahigh-resolution mass spectrometry for understanding metabolome composition and river corridor metabolism. However, there have been no studies on the global chemogeography of surface water and sediment metabolomes using ultrahigh-resolution techniques. Here, we describe a community science effort from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium to characterize global metabolomes in surface water and sediment that span multiple stream orders and biomes. We describe the distribution of key aspects of metabolomes including elemental groups, chemical classes, indices, and inferred biochemical transformations. We show that metabolomes significantly differ across surface water and sediment and that surface water metabolomes are more rich and variable. We also use inferred biochemical transformations to identify core metabolic processes shared among surface water and sediment. Finally, we observe significant spatial variation in sediment metabolites between rivers in the eastern and western portions of the contiguous United States. Our work not only provides a basis for understanding global patterns in river corridor biogeochemical cycles but also demonstrates that community science endeavors can enable global research projects that are unfeasible with traditional research models.
9
Paper
Citation2
0
Save
0

Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes

Emily Graham et al.Nov 18, 2016
Subsurface groundwater-surface water mixing zones (hyporheic zones) have enhanced biogeochemical activity, but assembly processes governing subsurface microbiomes remain a critical uncertainty in understanding hyporheic biogeochemistry. To address this obstacle, we investigated (a) biogeographical patterns in attached and waterborne microbiomes across three hydrologically-connected, physicochemically-distinct zones (inland hyporheic, nearshore hyporheic, and river); (b) assembly processes that generated these patterns; (c) groups of organisms that corresponded to deterministic changes in the environment; and (d) correlations between these groups and hyporheic metabolism. All microbiomes remained dissimilar through time, but consistent presence of similar taxa suggested dispersal and/or common selective pressures among zones. Further, we demonstrated a pronounced impact of deterministic assembly in all microbiomes as well as seasonal shifts from heterotrophic to autotrophic microorganisms associated with increases in groundwater discharge. The abundance of one statistical cluster of organisms increased with active biomass and respiration, revealing organisms that may strongly influence hyporheic biogeochemistry. Based on our results, we propose a conceptualization of hyporheic zone metabolism in which increased organic carbon concentrations during surface water intrusion support heterotrophy, which succumbs to autotrophy under groundwater discharge. These results provide new opportunities to enhance microbially-explicit ecosystem models describing hyporheic zone biogeochemistry and its influence over riverine ecosystem function.
0
0
Save