SG
Scott Gladstein
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
0
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nanoscale Chromatin Imaging and Analysis (nano-ChIA) platform bridges 4-D chromatin organization with molecular function

Yue Li et al.Jan 27, 2020
+20
A
R
Y
In eukaryotic cells, chromatin structure is linked to transcription processes through the regulation of genome organization. Extending across multiple length-scales - from the nucleosome to higher-order three-dimensional structures - chromatin is a dynamic system which evolves throughout the lifetime of a cell. However, no individual technique can fully elucidate the behavior of chromatin organization and its relation to molecular function at all length- and timescales at both a single-cell and a cell population level. Herein, we present a multi-technique nanoscale Chromatin Imaging and Analysis (nano-ChIA) platform that bridges electron tomography and optical superresolution imaging of chromatin conformation and transcriptional processes, with resolution down to the level of individual nucleosomes, with high-throughput, label-free analysis of chromatin packing and its dynamics in live cells. Utilizing nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nm, sub-Mb genomic size, and an internal fractal structure. The chromatin packing behavior of these domains is directly influenced by active gene transcription. Furthermore, we demonstrated that the chromatin packing domain structure is correlated among progenitor cells and all their progeny, indicating that the organization of chromatin into fractal packing domains is heritable across cell division. Further studies employing the nano-ChIA platform have the potential to provide a more coherent picture of chromatin structure and its relation to molecular function.
0

Live Cell Partial Wave Spectroscopic microscopy: Label-free Imaging of the Native, Living Cellular Nanoarchitecture

Luay Almassalha et al.Jul 2, 2016
+11
G
H
L
The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10nm) to the chromosomal (>200nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using Partial Wave Spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20-200nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nano-architecture. Therefore, we developed a live cell PWS technique which allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real-time. In this work, we employ live cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live cell DNA binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Since biological function is tightly paired with structure, live cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.
0

Multimodal interferometric imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm

Scott Gladstein et al.Oct 1, 2018
+14
L
L
S
We present a multimodal label-free interferometric imaging platform for measuring intracellular nanoscale structure and macromolecular dynamics in living cells with a sensitivity to macromolecules as small as 20nm and millisecond temporal resolution. We validate this system by pairing experimental measurements of nanosphere phantoms with a novel interferometric theory. Applying this system in vitro, we explore changes in higher-order chromatin structure and dynamics that occur due to cellular fixation, stem cell differentiation, and ultraviolet (UV) light irradiation. Finally, we discover a new phenomenon, cellular paroxysm, a near-instantaneous, synchronous burst of motion that occurs early in the process of UV induced cell death. Given this platforms ability to obtain nanoscale sensitive, millisecond resolved information within live cells without concerns of photobleaching, it has the potential to answer a broad range of critical biological questions about macromolecular behavior in live cells, particularly about the relationship between cellular structure and function.