JH
Jian Hu
Author with expertise in Macrophage Activation and Polarization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(92% Open Access)
Cited by:
5,588
h-index:
41
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Systematic analysis of telomere length and somatic alterations in 31 cancer types

Floris Barthel et al.Jan 30, 2017
Siyuan Zheng, Roel Verhaak and colleagues report an analysis of telomere lengths and somatic alterations in telomere-related pathways across 31 cancer types. Their study provides an overview of the molecular mechanisms driving TERT expression and activation of the ALT pathway, and identifies a subset of tumors with neither detectable TERT expression nor somatic alterations in ATRX or DAXX. Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Telomeres were shorter in tumors than in normal tissues and longer in sarcomas and gliomas than in other cancers. Among 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications and transcript fusions and predictive of telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, characterized by undetectable TERT expression and alterations in ATRX or DAXX, demonstrated elongated telomeres and increased telomeric repeat–containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT nor harbored alterations in ATRX or DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.
0
Citation514
0
Save
0

Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells

Boyi Gan et al.Nov 30, 2010
Haematopoietic stem cells are very sensitive to energetic and oxidative stress, and modulation of the balance between their quiescence and proliferation is needed to respond to metabolic stress while preserving their long-term regenerative capacity. Three new studies show that the tumour suppressor and metabolic sensor Lkb1 has a crucial role in maintaining energy homeostasis in haematopoietic cells. Lkb1 is shown to be necessary for cell-cycle regulation as well as for energy homeostasis, and haematopoietic stem cells depend more acutely on Lkb1 than any other haematopoietic cells. Haematopoietic stem cells (HSCs) are very sensitive to energetic and oxidative stress, and modulation of the balance between their quiescence and proliferation is needed to respond to metabolic stress while preserving HSCs' long-term regenerative capacity. Here, and in two accompanying studies, it is shown that the tumour suppressor Lkb1 has a crucial role in maintaining energy homeostasis in haematopoietic cells. The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases1,2,3. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.
0

Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution

Hoon Kim et al.Feb 3, 2015
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity.
0
Citation368
0
Save
0

Passenger deletions generate therapeutic vulnerabilities in cancer

Florian Müller et al.Aug 14, 2012
Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events. The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities. This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the ENO1 gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of ENO2 or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may be generally applicable and could offer new therapeutic opportunities.
0
Citation320
0
Save
0

STING agonist 8803 reprograms the immune microenvironment and increases survival in preclinical models of glioblastoma

Hinda Najem et al.Jun 16, 2024
STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.
0
Citation1
0
Save
Load More